BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 21903583)

  • 21. Sequential reconstitution of copper sites in the multicopper oxidase CueO.
    Galli I; Musci G; Bonaccorsi di Patti MC
    J Biol Inorg Chem; 2004 Jan; 9(1):90-5. PubMed ID: 14648285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Tat Substrate CueO Is Transported in an Incomplete Folding State.
    Stolle P; Hou B; Brüser T
    J Biol Chem; 2016 Jun; 291(26):13520-8. PubMed ID: 27129241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of a multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
    Sakuraba H; Koga K; Yoneda K; Kashima Y; Ohshima T
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jul; 67(Pt 7):753-7. PubMed ID: 21795787
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and structural characterization of an engineered multi-copper oxidase reporter of protein-protein interactions.
    Sana B; Chee SMQ; Wongsantichon J; Raghavan S; Robinson RC; Ghadessy FJ
    J Biol Chem; 2019 Apr; 294(17):7002-7012. PubMed ID: 30770473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center.
    Kataoka K; Kogi H; Tsujimura S; Sakurai T
    Biochem Biophys Res Commun; 2013 Feb; 431(3):393-7. PubMed ID: 23337502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Function and versatile location of Met-rich inserts in blue oxidases involved in bacterial copper resistance.
    Roulling F; Godin A; Feller G
    Biochimie; 2022 Mar; 194():118-126. PubMed ID: 34982982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of the CueO mutants at Glu506, the key amino acid located in the proton transfer pathway for dioxygen reduction.
    Komori H; Kajikawa T; Kataoka K; Higuchi Y; Sakurai T
    Biochem Biophys Res Commun; 2013 Sep; 438(4):686-90. PubMed ID: 23933321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cuprous oxidase activity of CueO from Escherichia coli.
    Singh SK; Grass G; Rensing C; Montfort WR
    J Bacteriol; 2004 Nov; 186(22):7815-7. PubMed ID: 15516598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli.
    Grass G; Thakali K; Klebba PE; Thieme D; Müller A; Wildner GF; Rensing C
    J Bacteriol; 2004 Sep; 186(17):5826-33. PubMed ID: 15317788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering Klebsiella sp. 601 multicopper oxidase enhances the catalytic efficiency towards phenolic substrates.
    Li Y; Gong Z; Li X; Li Y; Wang XG
    BMC Biochem; 2011 May; 12():30. PubMed ID: 21624144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli.
    Grass G; Rensing C
    Biochem Biophys Res Commun; 2001 Sep; 286(5):902-8. PubMed ID: 11527384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations at Asp112 adjacent to the trinuclear Cu center in CueO as the proton donor in the four-electron reduction of dioxygen.
    Ueki Y; Inoue M; Kurose S; Kataoka K; Sakurai T
    FEBS Lett; 2006 Jul; 580(17):4069-72. PubMed ID: 16828082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Desulfovibrio DA2_CueO is a novel multicopper oxidase with cuprous, ferrous and phenol oxidase activity.
    Mancini S; Kumar R; Mishra V; Solioz M
    Microbiology (Reading); 2017 Aug; 163(8):1229-1236. PubMed ID: 28749328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.
    Bagai I; Liu W; Rensing C; Blackburn NJ; McEvoy MM
    J Biol Chem; 2007 Dec; 282(49):35695-702. PubMed ID: 17893146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of the membrane fusion protein CusB from Escherichia coli.
    Su CC; Yang F; Long F; Reyon D; Routh MD; Kuo DW; Mokhtari AK; Van Ornam JD; Rabe KL; Hoy JA; Lee YJ; Rajashankar KR; Yu EW
    J Mol Biol; 2009 Oct; 393(2):342-55. PubMed ID: 19695261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment.
    Shenberger Y; Gottlieb HE; Ruthstein S
    J Biol Inorg Chem; 2015 Jun; 20(4):719-27. PubMed ID: 25822808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The PcoC copper resistance protein coordinates Cu(I) via novel S-methionine interactions.
    Peariso K; Huffman DL; Penner-Hahn JE; O'Halloran TV
    J Am Chem Soc; 2003 Jan; 125(2):342-3. PubMed ID: 12517140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
    Hall SJ; Hitchcock A; Butler CS; Kelly DJ
    J Bacteriol; 2008 Dec; 190(24):8075-85. PubMed ID: 18931123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli mechanisms of copper homeostasis in a changing environment.
    Rensing C; Grass G
    FEMS Microbiol Rev; 2003 Jun; 27(2-3):197-213. PubMed ID: 12829268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide.
    Su J; Deng L; Huang L; Guo S; Liu F; He J
    Water Res; 2014 Jun; 56():304-13. PubMed ID: 24699422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.