These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21903593)

  • 21. Feature processing during visual search in normal aging: electrophysiological evidence.
    Lorenzo-López L; Amenedo E; Cadaveira F
    Neurobiol Aging; 2008 Jul; 29(7):1101-10. PubMed ID: 17346855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What is top-down about contingent capture?
    Belopolsky AV; Schreij D; Theeuwes J
    Atten Percept Psychophys; 2010 Feb; 72(2):326-41. PubMed ID: 20139449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of feature attention on prestimulus cortical activity in the human visual system.
    Shibata K; Yamagishi N; Goda N; Yoshioka T; Yamashita O; Sato MA; Kawato M
    Cereb Cortex; 2008 Jul; 18(7):1664-75. PubMed ID: 17991628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual search performance in the autism spectrum II: the radial frequency search task with additional segmentation cues.
    Almeida RA; Dickinson JE; Maybery MT; Badcock JC; Badcock DR
    Neuropsychologia; 2010 Dec; 48(14):4117-24. PubMed ID: 20946906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The remains of the trial: goal-determined inter-trial suppression of selective attention.
    Lleras A; Levinthal BR; Kawahara J
    Prog Brain Res; 2009; 176():195-213. PubMed ID: 19733758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attentional capture in singleton-detection and feature-search modes.
    Lamy D; Egeth HE
    J Exp Psychol Hum Percept Perform; 2003 Oct; 29(5):1003-20. PubMed ID: 14585019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Greater frontal-parietal synchrony at low gamma-band frequencies for inefficient than efficient visual search in human EEG.
    Phillips S; Takeda Y
    Int J Psychophysiol; 2009 Sep; 73(3):350-4. PubMed ID: 19481120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What determines sustained visual attention? The impact of distracter positions, task difficulty and visual fields compared.
    Kraft A; Pape N; Hagendorf H; Schmidt S; Naito A; Brandt SA
    Brain Res; 2007 Feb; 1133(1):123-35. PubMed ID: 17174284
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visual search without attentional displacement.
    Zénon A; Ben Hamed S; Duhamel JR; Olivier E
    J Vis; 2009 Oct; 9(11):9.1-15. PubMed ID: 20053072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Context modulates early stimulus processing when resolving stimulus-response conflict.
    Scerif G; Worden MS; Davidson M; Seiger L; Casey BJ
    J Cogn Neurosci; 2006 May; 18(5):781-92. PubMed ID: 16768377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tracking the location of visuospatial attention in a contingent capture paradigm.
    Leblanc E; Prime DJ; Jolicoeur P
    J Cogn Neurosci; 2008 Apr; 20(4):657-71. PubMed ID: 18052780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection.
    Geng JJ; Diquattro NE
    J Vis; 2010 Jun; 10(6):5. PubMed ID: 20884554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active ignoring in early visual cortex.
    Payne HE; Allen HA
    J Cogn Neurosci; 2011 Aug; 23(8):2046-58. PubMed ID: 20807054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Searching for a salient target involves frontal regions.
    Wardak C; Vanduffel W; Orban GA
    Cereb Cortex; 2010 Oct; 20(10):2464-77. PubMed ID: 20100901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feature priming and the capture of visual attention: linking two ambiguity resolution hypotheses.
    Hickey C; Olivers C; Meeter M; Theeuwes J
    Brain Res; 2011 Jan; 1370():175-84. PubMed ID: 21078309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Object-based selection of irrelevant features is not confined to the attended object.
    Boehler CN; Schoenfeld MA; Heinze HJ; Hopf JM
    J Cogn Neurosci; 2011 Sep; 23(9):2231-9. PubMed ID: 20666592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulus saliency modulates pre-attentive processing speed in human visual cortex.
    Töllner T; Zehetleitner M; Gramann K; Müller HJ
    PLoS One; 2011 Jan; 6(1):e16276. PubMed ID: 21283699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The costs of emotional attention: affective processing inhibits subsequent lexico-semantic analysis.
    Ihssen N; Heim S; Keil A
    J Cogn Neurosci; 2007 Dec; 19(12):1932-49. PubMed ID: 17892390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.