BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21904008)

  • 1. On the estimate of the two dominant axes of the knee using an instrumented spatial linkage.
    Gatti G
    J Appl Biomech; 2012 May; 28(2):200-9. PubMed ID: 21904008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual design and implantation of an external fixator with improved mobility for knee rehabilitation.
    Gatti G
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):884-892. PubMed ID: 28332404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2011 May; 133(5):051003. PubMed ID: 21599094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transepicondylar axis approximates the optimal flexion axis of the knee.
    Churchill DL; Incavo SJ; Johnson CC; Beynnon BD
    Clin Orthop Relat Res; 1998 Nov; (356):111-8. PubMed ID: 9917674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hinged external fixation of the knee: intrinsic factors influencing passive joint motion.
    Sommers MB; Fitzpatrick DC; Kahn KM; Marsh JL; Bottlang M
    J Orthop Trauma; 2004 Mar; 18(3):163-9. PubMed ID: 15091271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of the knee joint kinematics calculation to selection of flexion axes.
    Most E; Axe J; Rubash H; Li G
    J Biomech; 2004 Nov; 37(11):1743-8. PubMed ID: 15388317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional knee axis based on isokinetic dynamometry data: Comparison of two methods, MRI validation, and effect on knee joint kinematics.
    Van Campen A; De Groote F; Bosmans L; Scheys L; Jonkers I; De Schutter J
    J Biomech; 2011 Oct; 44(15):2595-600. PubMed ID: 21924426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional kinematics of the human knee with intracortical pin fixation.
    Ishii Y; Terajima K; Terashima S; Koga Y
    Clin Orthop Relat Res; 1997 Oct; (343):144-50. PubMed ID: 9345219
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Kono K; Tomita T; Futai K; Yamazaki T; Tanaka S; Yoshikawa H; Sugamoto K
    Bone Joint J; 2018 Jan; 100-B(1):50-55. PubMed ID: 29305450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spatial mechanism with higher pairs for modelling the human knee joint.
    Di Gregorio R; Parenti-Castelli V
    J Biomech Eng; 2003 Apr; 125(2):232-7. PubMed ID: 12751285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in the orientation of knee functional flexion axis during passive flexion and extension movements in navigated total knee arthroplasty.
    Colle F; Bruni D; Iacono F; Visani A; Zaffagnini S; Marcacci M; Lopomo N
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2461-9. PubMed ID: 26438246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a three-dimensional model of the knee.
    Blankevoort L; Huiskes R
    J Biomech; 1996 Jul; 29(7):955-61. PubMed ID: 8809626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional flexion-extension axis of the knee corresponds to the surgical epicondylar axis: in vivo analysis using a biplanar image-matching technique.
    Asano T; Akagi M; Nakamura T
    J Arthroplasty; 2005 Dec; 20(8):1060-7. PubMed ID: 16376264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study.
    Yin L; Chen K; Guo L; Cheng L; Wang F; Yang L
    PLoS One; 2015; 10(6):e0128877. PubMed ID: 26039711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anterior cruciate ligament rupture translates the axes of motion within the knee.
    Mannel H; Marin F; Claes L; Dürselen L
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):130-5. PubMed ID: 14967575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A constraint-based approach to modelling the mobility of the human knee joint.
    Feikes JD; O'Connor JJ; Zavatsky AB
    J Biomech; 2003 Jan; 36(1):125-9. PubMed ID: 12485647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA.
    Kia M; Wright TM; Cross MB; Mayman DJ; Pearle AD; Sculco PK; Westrich GH; Imhauser CW
    Clin Orthop Relat Res; 2018 Jan; 476(1):113-123. PubMed ID: 29529625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.