These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21904025)

  • 1. Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends.
    Zhou C; Ma L; Li W; Yao D
    Biofabrication; 2011 Dec; 3(4):045003. PubMed ID: 21904025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent-free Fabrication of Tissue Engineering Scaffolds with Immiscible Polymer Blends.
    Ma L; Jiang W; Li W
    Int J Polym Mater; 2014; 63(10):510-517. PubMed ID: 24764605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.
    Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F
    Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer.
    Ock J; Li W
    Biofabrication; 2014 Jun; 6(2):024110. PubMed ID: 24999514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving pore interconnectivity in polymeric scaffolds for tissue engineering.
    Aydin HM; El Haj AJ; Pişkin E; Yang Y
    J Tissue Eng Regen Med; 2009 Aug; 3(6):470-6. PubMed ID: 19530258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of super-hydrophilic and highly open-porous poly (lactic acid) scaffolds using supercritical carbon dioxide foaming.
    Ren Q; Zhu X; Li W; Wu M; Cui S; Ling Y; Ma X; Wang G; Wang L; Zheng W
    Int J Biol Macromol; 2022 Apr; 205():740-748. PubMed ID: 35331790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends.
    Salerno A; Oliviero M; Di Maio E; Iannace S; Netti PA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2043-51. PubMed ID: 19430895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biphasic calcium phosphate scaffolds with controlled pore size distribution prepared by in-situ foaming.
    Novotna L; Kucera L; Hampl A; Drdlik D; Cihlar J; Cihlar J
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():363-370. PubMed ID: 30573260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of porous poly(L-lactide) scaffolds using solid-liquid phase separation.
    Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2008 Jun; 19(6):2445-52. PubMed ID: 18219558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth muscle cell adhesion in surface-modified three-dimensional copolymer scaffolds prepared from co-continuous blends.
    Bramfeldt H; Sarazin P; Vermette P
    J Biomed Mater Res A; 2009 Oct; 91(1):305-15. PubMed ID: 18980194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds.
    Kramschuster A; Turng LS
    J Biomed Mater Res B Appl Biomater; 2010 Feb; 92(2):366-76. PubMed ID: 19957359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
    Collins NJ; Bridson RH; Leeke GA; Grover LM
    Acta Biomater; 2010 Mar; 6(3):1055-60. PubMed ID: 19671454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric plasma treatment of porous polymer constructs for tissue engineering applications.
    Safinia L; Wilson K; Mantalaris A; Bismarck A
    Macromol Biosci; 2007 Mar; 7(3):315-27. PubMed ID: 17366509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.
    Serra T; Ortiz-Hernandez M; Engel E; Planell JA; Navarro M
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():55-62. PubMed ID: 24656352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of dense polylactic acid/beta-tricalcium phosphate scaffolds for bone tissue engineering.
    Yanoso-Scholl L; Jacobson JA; Bradica G; Lerner AL; O'Keefe RJ; Schwarz EM; Zuscik MJ; Awad HA
    J Biomed Mater Res A; 2010 Dec; 95(3):717-26. PubMed ID: 20725979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.