These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21904291)
1. Evaluation of energy expenditure in children with cerebral palsy using a multi-sensor accelerometer. Aviram R; Belokopytov M; Ben-Chaim S; Rotstein A J Sports Med Phys Fitness; 2011 Sep; 51(3):506-14. PubMed ID: 21904291 [TBL] [Abstract][Full Text] [Related]
2. Reliability and validity of an activity monitor (IDEEA) in the determination of temporal-spatial gait parameters in individuals with cerebral palsy. Mackey AH; Stott NS; Walt SE Gait Posture; 2008 Nov; 28(4):634-9. PubMed ID: 18534854 [TBL] [Abstract][Full Text] [Related]
3. The sensitivity and specificity of an activity monitor in detecting functional activities in young people with cerebral palsy. Mackey AH; Hewart P; Walt SE; Stott NS Arch Phys Med Rehabil; 2009 Aug; 90(8):1396-401. PubMed ID: 19651274 [TBL] [Abstract][Full Text] [Related]
4. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study. O'Neil ME; Fragala-Pinkham MA; Forman JL; Trost SG J Pediatr Rehabil Med; 2014; 7(3):233-40. PubMed ID: 25260506 [TBL] [Abstract][Full Text] [Related]
5. Energy cost in children assessed by multisensor activity monitors. Arvidsson D; Slinde F; Larsson S; Hulthén L Med Sci Sports Exerc; 2009 Mar; 41(3):603-11. PubMed ID: 19204590 [TBL] [Abstract][Full Text] [Related]
6. Quantification of energy expenditure during gait in children affected by cerebral palsy. Piccinini L; Cimolin V; Galli M; Berti M; Crivellini M; Turconi AC Eura Medicophys; 2007 Mar; 43(1):7-12. PubMed ID: 17072287 [TBL] [Abstract][Full Text] [Related]
7. Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Clanchy KM; Tweedy SM; Boyd RN; Trost SG Eur J Appl Physiol; 2011 Dec; 111(12):2951-9. PubMed ID: 21442163 [TBL] [Abstract][Full Text] [Related]
8. A comparison of three accelerometry-based devices for estimating energy expenditure in adults and children with cerebral palsy. Ryan JM; Walsh M; Gormley J J Neuroeng Rehabil; 2014 Aug; 11():116. PubMed ID: 25097005 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure. Whybrow S; Ritz P; Horgan GW; Stubbs RJ Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547 [TBL] [Abstract][Full Text] [Related]
10. Botulinum toxin a treatment in children with cerebral palsy: its effects on walking and energy expenditure. Balaban B; Tok F; Tan AK; Matthews DJ Am J Phys Med Rehabil; 2012 Jan; 91(1):53-64. PubMed ID: 22157436 [TBL] [Abstract][Full Text] [Related]
11. Test-retest reliability of the IDEEA system in the quantification of step parameters during walking and stair climbing. Gorelick ML; Bizzini M; Maffiuletti NA; Munzinger JP; Munzinger U Clin Physiol Funct Imaging; 2009 Jul; 29(4):271-6. PubMed ID: 19302230 [TBL] [Abstract][Full Text] [Related]
12. Accuracy of multisensor activity monitors in normal versus high BMI African American children. Arvidsson D; Fitch M; Hudes ML; Fleming SE J Phys Act Health; 2011 Nov; 8(8):1124-34. PubMed ID: 22039131 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the ability of three physical activity monitors to predict weight change and estimate energy expenditure. Correa JB; Apolzan JW; Shepard DN; Heil DP; Rood JC; Martin CK Appl Physiol Nutr Metab; 2016 Jul; 41(7):758-66. PubMed ID: 27270210 [TBL] [Abstract][Full Text] [Related]
14. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Ahmadi M; O'Neil M; Fragala-Pinkham M; Lennon N; Trost S J Neuroeng Rehabil; 2018 Nov; 15(1):105. PubMed ID: 30442154 [TBL] [Abstract][Full Text] [Related]
15. Comparison of direct and indirect measures of walking energy expenditure in children with hemiplegic cerebral palsy. Keefer DJ; Tseh W; Caputo JL; Apperson K; McGreal S; Morgan DW Dev Med Child Neurol; 2004 May; 46(5):320-4. PubMed ID: 15132262 [TBL] [Abstract][Full Text] [Related]
16. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Kumahara H; Schutz Y; Ayabe M; Yoshioka M; Yoshitake Y; Shindo M; Ishii K; Tanaka H Br J Nutr; 2004 Feb; 91(2):235-43. PubMed ID: 14756909 [TBL] [Abstract][Full Text] [Related]
17. The energy expenditure index: a method to quantitate and compare walking energy expenditure for children and adolescents. Rose J; Gamble JG; Lee J; Lee R; Haskell WL J Pediatr Orthop; 1991; 11(5):571-8. PubMed ID: 1918341 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a wearable body monitoring device during treadmill walking and jogging in patients with fibromyalgia syndrome. Munguía-Izquierdo D; Santalla A; Legaz-Arrese A Arch Phys Med Rehabil; 2012 Jan; 93(1):115-22. PubMed ID: 22200390 [TBL] [Abstract][Full Text] [Related]
19. Ambulatory measurement of knee motion and physical activity: preliminary evaluation of a smart activity monitor. Huddleston J; Alaiti A; Goldvasser D; Scarborough D; Freiberg A; Rubash H; Malchau H; Harris W; Krebs D J Neuroeng Rehabil; 2006 Sep; 3():21. PubMed ID: 16970818 [TBL] [Abstract][Full Text] [Related]
20. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy. Plasschaert F; Jones K; Forward M Arch Phys Med Rehabil; 2008 Dec; 89(12):2302-8. PubMed ID: 19061743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]