BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21905030)

  • 21. Hydrogel Beads of Natural Polymers as a Potential Vehicle for Colon-Targeted Drug Delivery.
    Pushpamalar J; Sathasivam T; Gugler MC
    Methods Mol Biol; 2021; 2211():171-182. PubMed ID: 33336277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Current Limitations in the Treatment of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Future Perspective of Polymeric Carriers.
    Tonda-Turo C; Origlia N; Mattu C; Accorroni A; Chiono V
    Curr Med Chem; 2018; 25(41):5755-5771. PubMed ID: 29473493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.
    Ramírez E; Burillo SG; Barrera-Díaz C; Roa G; Bilyeu B
    J Hazard Mater; 2011 Aug; 192(2):432-9. PubMed ID: 21705138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery.
    Lallana E; Fernandez-Trillo F; Sousa-Herves A; Riguera R; Fernandez-Megia E
    Pharm Res; 2012 Apr; 29(4):902-21. PubMed ID: 22274559
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Hydrogels for Microneedle-Assisted Transdermal Delivery of Naloxone for Opioid-Induced Pruritus.
    Gao X; Brogden NK
    J Pharm Sci; 2019 Nov; 108(11):3695-3703. PubMed ID: 31476312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinspired pH-sensitive riboflavin controlled-release alkaline hydrogels based on blue crab chitosan: Study of the effect of polymer characteristics.
    Hamdi M; Nasri R; Li S; Nasri M
    Int J Biol Macromol; 2020 Jun; 152():1252-1264. PubMed ID: 31760028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery.
    Zavgorodnya O; Carmona-Moran CA; Kozlovskaya V; Liu F; Wick TM; Kharlampieva E
    J Colloid Interface Sci; 2017 Nov; 506():589-602. PubMed ID: 28759859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Concentration influence of some polymers on dermatological hydrogels pH].
    Musiał W; Kubis A
    Polim Med; 2005; 35(3):21-30. PubMed ID: 16440894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glyco-Modification of Mucin Hydrogels to Investigate Their Immune Activity.
    Yan H; Hjorth M; Winkeljann B; Dobryden I; Lieleg O; Crouzier T
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19324-19336. PubMed ID: 32301325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled hydrogels utilizing polymer-nanoparticle interactions.
    Appel EA; Tibbitt MW; Webber MJ; Mattix BA; Veiseh O; Langer R
    Nat Commun; 2015 Feb; 6():6295. PubMed ID: 25695516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir.
    Malik NS; Ahmad M; Minhas MU
    PLoS One; 2017; 12(2):e0172727. PubMed ID: 28245257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable and pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies.
    Casadei MA; Pitarresi G; Calabrese R; Paolicelli P; Giammona G
    Biomacromolecules; 2008 Jan; 9(1):43-9. PubMed ID: 18052027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient binding promotes molecule penetration into mucin hydrogels by enhancing molecular partitioning.
    Marczynski M; Käsdorf BT; Altaner B; Wenzler A; Gerland U; Lieleg O
    Biomater Sci; 2018 Nov; 6(12):3373-3387. PubMed ID: 30362469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The particle in the spider's web: transport through biological hydrogels.
    Witten J; Ribbeck K
    Nanoscale; 2017 Jun; 9(24):8080-8095. PubMed ID: 28580973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Edible Polymer Based Hydrogels as a Sustainable Alternative to Conventional Polymers.
    Ali A; Ahmed S
    J Agric Food Chem; 2018 Jul; 66(27):6940-6967. PubMed ID: 29878765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers.
    Nam K; Watanabe J; Ishihara K
    Int J Pharm; 2004 May; 275(1-2):259-69. PubMed ID: 15081156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Synthesis of Mucin-Inspired Glycopolymers.
    Kwan CS; Cerullo AR; Braunschweig AB
    Chempluschem; 2020 Dec; 85(12):2704-2721. PubMed ID: 33346954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.
    Lu J; Li Y; Hu D; Chen X; Liu Y; Wang L; Zhao Y
    Biomed Res Int; 2015; 2015():236745. PubMed ID: 26351630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural and synthetic biomaterials for controlled drug delivery.
    Kim JK; Kim HJ; Chung JY; Lee JH; Young SB; Kim YH
    Arch Pharm Res; 2014 Jan; 37(1):60-8. PubMed ID: 24197492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling drug release through stimuli responsive polymer hydrogels.
    Pareek A; Maheshwari S; Cherlo S; Thavva RSR; Runkana V
    Int J Pharm; 2017 Oct; 532(1):502-510. PubMed ID: 28882487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.