These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21905035)
1. Freeze-drying of nanosuspensions, part 3: investigation of factors compromising storage stability of highly concentrated drug nanosuspensions. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2012 Jan; 101(1):354-62. PubMed ID: 21905035 [TBL] [Abstract][Full Text] [Related]
2. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957 [TBL] [Abstract][Full Text] [Related]
3. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Van Eerdenbrugh B; Froyen L; Van Humbeeck J; Martens JA; Augustijns P; Van den Mooter G Eur J Pharm Sci; 2008 Sep; 35(1-2):127-35. PubMed ID: 18644441 [TBL] [Abstract][Full Text] [Related]
4. Freeze-drying of nanosuspensions, 1: freezing rate versus formulation design as critical factors to preserve the original particle size distribution. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 May; 100(5):1958-68. PubMed ID: 21374626 [TBL] [Abstract][Full Text] [Related]
5. Optimization of the lyophilization process for long-term stability of solid-lipid nanoparticles. Howard MD; Lu X; Jay M; Dziubla TD Drug Dev Ind Pharm; 2012 Oct; 38(10):1270-9. PubMed ID: 22235767 [TBL] [Abstract][Full Text] [Related]
6. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369 [TBL] [Abstract][Full Text] [Related]
7. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles. Zelenková T; Barresi AA; Fissore D J Pharm Sci; 2015 Jan; 104(1):178-90. PubMed ID: 25421731 [TBL] [Abstract][Full Text] [Related]
8. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462 [TBL] [Abstract][Full Text] [Related]
9. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623 [TBL] [Abstract][Full Text] [Related]
10. Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Yue PF; Li G; Dan JX; Wu ZF; Wang CH; Zhu WF; Yang M Int J Pharm; 2014 Nov; 475(1-2):35-48. PubMed ID: 25158243 [TBL] [Abstract][Full Text] [Related]
11. [Freeze-drying of oleanolic acid-loaded nanosuspensions]. Zhao XL; Chen HB; Chen YJ; Yang XL Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(18):1874-6. PubMed ID: 18051893 [TBL] [Abstract][Full Text] [Related]
12. Preparation of azithromycin nanosuspensions by reactive precipitation method. Hou CD; Wang JX; Le Y; Zou HK; Zhao H Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042 [TBL] [Abstract][Full Text] [Related]
13. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
14. Formulation and drying of miconazole and itraconazole nanosuspensions. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552 [TBL] [Abstract][Full Text] [Related]
15. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Luo WC; O'Reilly Beringhs A; Kim R; Zhang W; Patel SM; Bogner RH; Lu X Eur J Pharm Biopharm; 2021 Dec; 169():256-267. PubMed ID: 34732383 [TBL] [Abstract][Full Text] [Related]
16. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086 [TBL] [Abstract][Full Text] [Related]
17. Bead layering as a process to stabilize nanosuspensions: influence of drug hydrophobicity on nanocrystal reagglomeration following in-vitro release from sugar beads. Kayaert P; Anné M; Van den Mooter G J Pharm Pharmacol; 2011 Nov; 63(11):1446-53. PubMed ID: 21988425 [TBL] [Abstract][Full Text] [Related]
18. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Salazar J; Müller RH; Möschwitzer JP Eur J Pharm Sci; 2013 Jul; 49(4):565-77. PubMed ID: 23587645 [TBL] [Abstract][Full Text] [Related]
20. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]