These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21905199)

  • 1. Aluminum stress and its role in the phospholipid signaling pathway in plants and possible biotechnological applications.
    Poot-Poot W; Hernandez-Sotomayor SM
    IUBMB Life; 2011 Oct; 63(10):864-72. PubMed ID: 21905199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does aluminum generate a bonafide phospholipd signal cascade?
    Ramos-Díaz A; Hérnandez-Sotomayor ST
    Plant Signal Behav; 2007 Jul; 2(4):263-4. PubMed ID: 19704674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminium-induced phospholipid signal transduction pathway in Coffea arabica suspension cells and its amelioration by silicic acid.
    Quintal-Tun F; Muñoz-Sánchez JA; Ramos-Díaz A; Escamilla-Bencomo A; Martínez-Estévez M; Exley C; Hernández-Sotomayor SM
    J Inorg Biochem; 2007 Feb; 101(2):362-9. PubMed ID: 17161461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The location of aluminium in protoplasts and suspension cells taken from Coffea arabica L. with different tolerance of Al.
    Ramírez-Benítez JE; Hernández-Sotomayor SM; Muñoz-Sánchez JA
    J Inorg Biochem; 2009 Nov; 103(11):1491-6. PubMed ID: 19747735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L.
    Pech-Kú R; Muñoz-Sánchez JA; Monforte-González M; Vázquez-Flota F; Rodas-Junco BA; González-Mendoza VM; Hernández-Sotomayor SMT
    J Inorg Biochem; 2018 Apr; 181():177-182. PubMed ID: 28867596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of salicylic acid on the attenuation of aluminum toxicity in Coffea arabica L. suspension cells: A possible protein phosphorylation signaling pathway.
    Muñoz-Sanchez JA; Chan-May A; Cab-Guillén Y; Hernández-Sotomayor SM
    J Inorg Biochem; 2013 Nov; 128():188-95. PubMed ID: 23953991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of aluminum on in vitro primary root growth, nutrient content and phospholipase C activity in coffee seedlings (Coffea arabica).
    de A Bojórquez-Quintal JE; Sánchez-Cach LA; Ku-González Á; de los Santos-Briones C; de Fátima Medina-Lara M; Echevarría-Machado I; Muñoz-Sánchez JA; Teresa Hernández Sotomayor SM; Estévez MM
    J Inorg Biochem; 2014 May; 134():39-48. PubMed ID: 24531533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of phosphate on aluminium-inhibited growth and signal transduction pathways in Coffea arabica suspension cells.
    Chee-González L; Muñoz-Sánchez JA; Racagni-Di Palma G; Hernández-Sotomayor SM
    J Inorg Biochem; 2009 Nov; 103(11):1497-503. PubMed ID: 19740543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aluminum induces changes in oxidative burst scavenging enzymes in Coffea arabica L. suspension cells with differential Al tolerance.
    Ramírez-Benítez JE; Muñoz-Sánchez JA; Becerril-Chi KM; Miranda-Ham Mde L; Castro-Concha LA; Hernández-Sotomayor SM
    J Inorg Biochem; 2011 Nov; 105(11):1523-8. PubMed ID: 22099163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of phospholipid signaling in plant growth and hormone effects.
    Xue H; Chen X; Li G
    Curr Opin Plant Biol; 2007 Oct; 10(5):483-9. PubMed ID: 17709277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and molecular mechanisms of aluminum tolerance in plants.
    Simões CC; Melo JO; Magalhaes JV; Guimarães CT
    Genet Mol Res; 2012 Jul; 11(3):1949-57. PubMed ID: 22869550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aluminum stress response in rice: effects on membrane lipid composition and expression of lipid biosynthesis genes.
    Huynh VB; Repellin A; Zuily-Fodil Y; Pham-Thi AT
    Physiol Plant; 2012 Nov; 146(3):272-84. PubMed ID: 22452575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhiza alters metal uptake and the physiological response of Coffea arabica seedlings to increasing Zn and Cu concentrations in soil.
    Andrade SA; Silveira AP; Mazzafera P
    Sci Total Environ; 2010 Oct; 408(22):5381-91. PubMed ID: 20716461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of aluminum sensing and signaling in plant aluminum resistance.
    Liu J; Piñeros MA; Kochian LV
    J Integr Plant Biol; 2014 Mar; 56(3):221-30. PubMed ID: 24417891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical characterization of phospholipases C from Coffea arabica in response to aluminium stress.
    González-Mendoza VM; Sánchez-Sandoval ME; Munnik T; Hernández-Sotomayor SMT
    J Inorg Biochem; 2020 Mar; 204():110951. PubMed ID: 31926370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen signaling and abiotic stress.
    Miller G; Shulaev V; Mittler R
    Physiol Plant; 2008 Jul; 133(3):481-9. PubMed ID: 18346071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of aluminium on plant growth and metabolism.
    Mossor-Pietraszewska T
    Acta Biochim Pol; 2001; 48(3):673-86. PubMed ID: 11833776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elicitor signal transduction leading to production of plant secondary metabolites.
    Zhao J; Davis LC; Verpoorte R
    Biotechnol Adv; 2005 Jun; 23(4):283-333. PubMed ID: 15848039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to toxic concentrations of aluminum activates a MAPK-like protein in cell suspension cultures of Coffea arabica.
    Arroyo-Serralta GA; Kú-González A; Hernández-Sotomayor SM; Zúñiga Aguilar JJ
    Plant Physiol Biochem; 2005 Jan; 43(1):27-35. PubMed ID: 15763663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.