These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 21905227)
41. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Shi XM; Jiang Y; Chen F Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304 [TBL] [Abstract][Full Text] [Related]
42. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Chen CY; Kao PC; Tsai CJ; Lee DJ; Chang JS Bioresour Technol; 2013 Oct; 145():307-12. PubMed ID: 23664178 [TBL] [Abstract][Full Text] [Related]
43. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Markou G Bioresour Technol; 2012 Jul; 116():533-5. PubMed ID: 22595095 [TBL] [Abstract][Full Text] [Related]
44. Raceway cultivation of Spirulina platensis using underground water. Kim CJ; Jung YH; Ko SR; Kim HI; Park YH; Oh HM J Microbiol Biotechnol; 2007 May; 17(5):853-7. PubMed ID: 18051309 [TBL] [Abstract][Full Text] [Related]
45. Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. Barrocal VM; García-Cubero MT; González-Benito G; Coca M N Biotechnol; 2010 Dec; 27(6):851-6. PubMed ID: 20619370 [TBL] [Abstract][Full Text] [Related]
46. Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Gokhale SV; Jyoti KK; Lele SS Bioresour Technol; 2008 Jun; 99(9):3600-8. PubMed ID: 17900893 [TBL] [Abstract][Full Text] [Related]
47. Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture. Holland T; Sack M; Rademacher T; Schmale K; Altmann F; Stadlmann J; Fischer R; Hellwig S Biotechnol Bioeng; 2010 Oct; 107(2):278-89. PubMed ID: 20506104 [TBL] [Abstract][Full Text] [Related]
48. Use of the effluent from biogas production for cultivation of Spirulina. Hultberg M; Lind O; Birgersson G; Asp H Bioprocess Biosyst Eng; 2017 Apr; 40(4):625-631. PubMed ID: 28025700 [TBL] [Abstract][Full Text] [Related]
49. Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Markou G; Vandamme D; Muylaert K Bioresour Technol; 2014 Mar; 155():373-8. PubMed ID: 24472681 [TBL] [Abstract][Full Text] [Related]
50. Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Esen M; Ozturk Urek R Biotechnol Appl Biochem; 2015; 62(2):275-86. PubMed ID: 25425155 [TBL] [Abstract][Full Text] [Related]
51. Growth and content of spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Godoy Danesi ED; Oliveira Rangel-Yagui C; Sato S; Monteiro de Carvalho JC Braz J Microbiol; 2011 Jan; 42(1):362-73. PubMed ID: 24031643 [TBL] [Abstract][Full Text] [Related]
52. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima. Jung JY; Kim S; Lee H; Kim K; Kim W; Park MS; Kwon JH; Yang JW Bioprocess Biosyst Eng; 2014 Dec; 37(12):2395-400. PubMed ID: 24871274 [TBL] [Abstract][Full Text] [Related]
53. Effects of light intensity and dilution rate on the semicontinuous cultivation of Arthrospira (Spirulina) platensis. A kinetic Monod-type approach. Bezerra RP; Montoya EY; Sato S; Perego P; de Carvalho JC; Converti A Bioresour Technol; 2011 Feb; 102(3):3215-9. PubMed ID: 21111613 [TBL] [Abstract][Full Text] [Related]
54. Mass cultivation of UV-B adapted Arthrospira platensis RRGK under open raceway pond for the production of Poly-β-hydroxy butyrate. Kavitha G; Kurinjimalar C; Sivakumar K; Aravind R; Shree CG; Arthi K; Palani P; Kaviyarasan V; Rengasamy R Int J Biol Macromol; 2016 Dec; 93(Pt A):1304-1316. PubMed ID: 27697491 [TBL] [Abstract][Full Text] [Related]
55. Co2+, Cu2+, and Zn2+ accumulation by cyanobacterium Spirulina platensis. Vannela R; Verma SK Biotechnol Prog; 2006; 22(5):1282-93. PubMed ID: 17022665 [TBL] [Abstract][Full Text] [Related]
56. Selenium uptake and assessment of the biochemical changes in Arthrospira (Spirulina) platensis biomass during the synthesis of selenium nanoparticles. Zinicovscaia I; Chiriac T; Cepoi L; Rudi L; Culicov O; Frontasyeva M; Rudic V Can J Microbiol; 2017 Jan; 63(1):27-34. PubMed ID: 27841947 [TBL] [Abstract][Full Text] [Related]
57. Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production. Lai YH; Puspanadan S; Lee CK Biotechnol Prog; 2019 May; 35(3):e2798. PubMed ID: 30828976 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of biomass and phycocyanin content of Spirulina platensis. Khazi MI; Demirel Z; Conk Dalay M Front Biosci (Elite Ed); 2018 Jan; 10(2):276-286. PubMed ID: 28930618 [TBL] [Abstract][Full Text] [Related]
59. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954 [TBL] [Abstract][Full Text] [Related]
60. Cultivation of an Arthrospira platensis with digested piggery wastewater. Liu R; Guo Q; Zheng W; Chen L; Luo J Water Sci Technol; 2015; 72(10):1774-9. PubMed ID: 26540538 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]