These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 21905726)

  • 1. Studies of liquid crystalline self-assembly of GdF₃ nanoplates by in-plane, out-of-plane SAXS.
    Paik T; Ko DK; Gordon TR; Doan-Nguyen V; Murray CB
    ACS Nano; 2011 Oct; 5(10):8322-30. PubMed ID: 21905726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films.
    Urban JJ; Talapin DV; Shevchenko EV; Murray CB
    J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing tripodal and triangular gadolinium oxide nanoplates and self-assembled nanofibrils as potential multimodal bioimaging probes.
    Paik T; Gordon TR; Prantner AM; Yun H; Murray CB
    ACS Nano; 2013 Mar; 7(3):2850-9. PubMed ID: 23432186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
    Paik T; Diroll BT; Kagan CR; Murray CB
    J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled simple hexagonal AB(2) binary nanocrystal superlattices: SEM, GISAXS, and defects.
    Smith DK; Goodfellow B; Smilgies DM; Korgel BA
    J Am Chem Soc; 2009 Mar; 131(9):3281-90. PubMed ID: 19216526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-directed binary assembly of anisotropic nanoplates: a nanocrystal puzzle with shape-complementary building blocks.
    Paik T; Murray CB
    Nano Lett; 2013 Jun; 13(6):2952-6. PubMed ID: 23668826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.
    Ma H; Hao J
    Chem Soc Rev; 2011 Nov; 40(11):5457-71. PubMed ID: 21792458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bistable magnetoresistance switching in exchange-coupled CoFe₂O₄--Fe₃O₄ binary nanocrystal superlattices by self-assembly and thermal annealing.
    Chen J; Ye X; Oh SJ; Kikkawa JM; Kagan CR; Murray CB
    ACS Nano; 2013 Feb; 7(2):1478-86. PubMed ID: 23273052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-area ordered superlattices from magnetic Wustite/cobalt ferrite core/shell nanocrystals by doctor blade casting.
    Bodnarchuk MI; Kovalenko MV; Pichler S; Fritz-Popovski G; Hesser G; Heiss W
    ACS Nano; 2010 Jan; 4(1):423-31. PubMed ID: 20028102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unprecedented observation of days-long remnant orientation of phospholipid bicelles: a small-angle X-ray scattering and theoretical study.
    Loudet-Courreges C; Nallet F; Dufourc EJ; Oda R
    Langmuir; 2011 Aug; 27(15):9122-30. PubMed ID: 21662979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices.
    Paik T; Yun H; Fleury B; Hong SH; Jo PS; Wu Y; Oh SJ; Cargnello M; Yang H; Murray CB; Kagan CR
    Nano Lett; 2017 Mar; 17(3):1387-1394. PubMed ID: 28146634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of nanofibers formed by self-assembly of beta-peptide oligomers using small angle x-ray scattering.
    Pizzey CL; Pomerantz WC; Sung BJ; Yuwono VM; Gellman SH; Hartgerink JD; Yethiraj A; Abbott NL
    J Chem Phys; 2008 Sep; 129(9):095103. PubMed ID: 19044891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic electron crystallographic studies of self-assembled binary nanocrystal superlattices.
    Chen J; Ye X; Murray CB
    ACS Nano; 2010 Apr; 4(4):2374-81. PubMed ID: 20302347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.