BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21905735)

  • 21. Assays to control the development of the green staining alteration in Spanish-style green olives of the Gordal variety.
    Sánchez AH; Romero C; de Castro A; Rejano L; Brenes M
    J Sci Food Agric; 2016 Sep; 96(12):4032-6. PubMed ID: 26700060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Spanish-style processing on the quality attributes of HydroSOStainable green olives.
    Sánchez-Rodríguez L; Corell M; Hernández F; Sendra E; Moriana A; Carbonell-Barrachina ÁA
    J Sci Food Agric; 2019 Mar; 99(4):1804-1811. PubMed ID: 30255627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea).
    Sansone-Land A; Takeoka GR; Shoemaker CF
    Food Chem; 2014 Apr; 149():285-95. PubMed ID: 24295708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorophylls in olive and in olive oil: chemistry and occurrences.
    Giuliani A; Cerretani L; Cichelli A
    Crit Rev Food Sci Nutr; 2011 Aug; 51(7):678-90. PubMed ID: 21793727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous Determination of Phenolic Compounds in Plasma by LC-ESI-MS/MS and Their Bioavailability after the Ingestion of Table Olives.
    Kundisová I; Juan ME; Planas JM
    J Agric Food Chem; 2020 Sep; 68(37):10213-10222. PubMed ID: 32833444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry.
    Nortes-Méndez R; Robles-Molina J; López-Blanco R; Vass A; Molina-Díaz A; Garcia-Reyes JF
    Talanta; 2016 Sep; 158():222-228. PubMed ID: 27343599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3,4-Dihydroxyphenylglycol (DHPG): an important phenolic compound present in natural table olives.
    Rodríguez G; Lama A; Jaramillo S; Fuentes-Alventosa JM; Guillén R; Jiménez-Araujo A; Rodríguez-Arcos R; Fernández-Bolaños J
    J Agric Food Chem; 2009 Jul; 57(14):6298-304. PubMed ID: 19545148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Involvement of Copper and Zinc Ions in Green Staining of Table Olives of the Variety Gordal.
    Mínguez-Mosquera MI; Gallardo-Guerrero L; Hornero-Méndez D; Garrido-Fernández J
    J Food Prot; 1995 May; 58(5):564-569. PubMed ID: 31137264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multivariate analysis for the evaluation of fiber, sugars, and organic acids in commercial presentations of table olives.
    López-López A; Jiménez-Araujo A; García-García P; Garrido-Fernández A
    J Agric Food Chem; 2007 Dec; 55(26):10803-11. PubMed ID: 18052035
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Table olive polyphenols: A simultaneous determination by liquid chromatography-mass spectrometry.
    Moreno-González R; Juan ME; Planas JM
    J Chromatogr A; 2020 Jan; 1609():460434. PubMed ID: 31416621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Survey of vitamin B(6) content in commercial presentations of table olives.
    López-López A; Montaño A; Cortés-Delgado A; Garrido-Fernández A
    Plant Foods Hum Nutr; 2008 Jun; 63(2):87-91. PubMed ID: 18496754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cultivar and processing method on the contents of polyphenols in table olives.
    Romero C; Brenes M; Yousfi K; García P; García A; Garrido A
    J Agric Food Chem; 2004 Feb; 52(3):479-84. PubMed ID: 14759136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GC-MS olfactometric and LC-DAD-ESI-MS/MS characterization of key odorants and phenolic compounds in black dry-salted olives.
    Selli S; Kelebek H; Kesen S; Sonmezdag AS
    J Sci Food Agric; 2018 Aug; 98(11):4104-4111. PubMed ID: 29388215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.
    Guyer L; Hofstetter SS; Christ B; Lira BS; Rossi M; Hörtensteiner S
    Plant Physiol; 2014 Sep; 166(1):44-56. PubMed ID: 25033826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors influencing phenolic compounds in table olives (Olea europaea).
    Charoenprasert S; Mitchell A
    J Agric Food Chem; 2012 Jul; 60(29):7081-95. PubMed ID: 22720792
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv. Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion.
    Fernández-Poyatos MP; Ruiz-Medina A; Llorent-Martínez EJ
    Food Chem; 2019 Nov; 297():124933. PubMed ID: 31253274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of odor-active compounds in extracts obtained by simultaneous extraction/distillation from moroccan black olives.
    Collin S; Nizet S; Muls S; Iraqi R; Bouseta A
    J Agric Food Chem; 2008 May; 56(9):3273-8. PubMed ID: 18393434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlorophyll and carotenoid degradation mediated by thylakoid-associated peroxidative activity in olives (Olea europaea) cv. hojiblanca.
    Gandul-Rojas B; Roca M; Mínguez-Mosquera MI
    J Plant Physiol; 2004 May; 161(5):499-507. PubMed ID: 15202706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.
    Kao TH; Chen CJ; Chen BH
    Talanta; 2011 Oct; 86():349-55. PubMed ID: 22063550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophenols in table olives.
    Blekas G; Vassilakis C; Harizanis C; Tsimidou M; Boskou DG
    J Agric Food Chem; 2002 Jun; 50(13):3688-92. PubMed ID: 12059143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.