BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21906041)

  • 1. The fluorescent dyes TO-PRO-3 and TOTO-3 iodide allow detection of microbial cells in soil samples without interference from background fluorescence.
    Henneberger R; Birch D; Bergquist P; Walter M; Anitori RP
    Biotechniques; 2011 Sep; 51(3):190-2. PubMed ID: 21906041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explorations of the application of cyanine dyes for quantitative alpha-synuclein detection.
    Volkova KD; Kovalska VB; Segers-Nolten GM; Veldhuis G; Subramaniam V; Yarmoluk SM
    Biotech Histochem; 2009 Apr; 84(2):55-61. PubMed ID: 19267288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FRET studies of the interaction of dimeric cyanine dyes with DNA.
    Laib S; Seeger S
    J Fluoresc; 2004 Mar; 14(2):187-91. PubMed ID: 15615044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tricolour fluorescence detection of sequence-specific DNA with a new molecular beacon and a nucleic acid dye TOTO-3.
    Xiang D; Zhang C; Chen L; Ji X; He Z
    Analyst; 2012 Dec; 137(24):5898-905. PubMed ID: 23113317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ analysis of native microbial communities in complex samples with high particulate loads.
    Barra Caracciolo A; Grenni P; Cupo C; Rossetti S
    FEMS Microbiol Lett; 2005 Dec; 253(1):55-8. PubMed ID: 16213678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TO-PRO-3 is an optimal fluorescent dye for nuclear counterstaining in dual-colour FISH on paraffin sections.
    Bink K; Walch A; Feuchtinger A; Eisenmann H; Hutzler P; Höfler H; Werner M
    Histochem Cell Biol; 2001 Apr; 115(4):293-9. PubMed ID: 11405057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific fluorescent detection of fibrillar alpha-synuclein using mono- and trimethine cyanine dyes.
    Volkova KD; Kovalska VB; Balanda AO; Losytskyy MY; Golub AG; Vermeij RJ; Subramaniam V; Tolmachev OI; Yarmoluk SM
    Bioorg Med Chem; 2008 Feb; 16(3):1452-9. PubMed ID: 17980608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms.
    Moter A; Göbel UB
    J Microbiol Methods; 2000 Jul; 41(2):85-112. PubMed ID: 10991623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities.
    Ainsworth TD; Fine M; Blackall LL; Hoegh-Guldberg O
    Appl Environ Microbiol; 2006 Apr; 72(4):3016-20. PubMed ID: 16598010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enumeration of soil bacteria with the green fluorescent nucleic acid dye Sytox green in the presence of soil particles.
    Klauth P; Wilhelm R; Klumpp E; Poschen L; Groeneweg J
    J Microbiol Methods; 2004 Nov; 59(2):189-98. PubMed ID: 15369855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of monomeric and homodimeric oxazolo[4,5-b]pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization.
    Kovalska VB; Tokar VP; Losytskyy MY; Deligeorgiev T; Vassilev A; Gadjev N; Drexhage KH; Yarmoluk SM
    J Biochem Biophys Methods; 2006 Oct; 68(3):155-65. PubMed ID: 16828165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-up probes: thiazole orange-conjugated peptide nucleic acid for detection of target nucleic acid in homogeneous solution.
    Svanvik N; Westman G; Wang D; Kubista M
    Anal Biochem; 2000 May; 281(1):26-35. PubMed ID: 10847607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Routine fluorescence in situ hybridization in soil.
    Bertaux J; Gloger U; Schmid M; Hartmann A; Scheu S
    J Microbiol Methods; 2007 Jun; 69(3):451-60. PubMed ID: 17442439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques.
    Amann R; Fuchs BM
    Nat Rev Microbiol; 2008 May; 6(5):339-48. PubMed ID: 18414500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyanine dyes for the detection of double stranded DNA.
    Hilal H; Taylor JA
    J Biochem Biophys Methods; 2008 Apr; 70(6):1104-8. PubMed ID: 18304645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of streptavidin on the absorption and fluorescence properties of cyanine dyes.
    Luschtinetz F; Dosche C; Kumke MU
    Bioconjug Chem; 2009 Mar; 20(3):576-82. PubMed ID: 19226170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of tyramide solutions for an improved detection and enumeration of single microbial cells in soil by CARD-FISH.
    Schmidt H; Eickhorst T; Tippkötter R
    J Microbiol Methods; 2012 Dec; 91(3):399-405. PubMed ID: 23022442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanine dye labeling reagents for sulfhydryl groups.
    Ernst LA; Gupta RK; Mujumdar RB; Waggoner AS
    Cytometry; 1989 Jan; 10(1):3-10. PubMed ID: 2917472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abasic site-binding ligands conjugated with cyanine dyes for "off-on" fluorescence sensing of orphan nucleobases in DNA duplexes and DNA-RNA hybrids.
    Sato Y; Kudo M; Toriyabe Y; Kuchitsu S; Wang CX; Nishizawa S; Teramae N
    Chem Commun (Camb); 2014 Jan; 50(5):515-7. PubMed ID: 24247159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Key Structural Elements of Unsymmetrical Cyanine Dyes for Highly Sensitive Fluorescence Turn-On DNA Probes.
    Uno K; Sasaki T; Sugimoto N; Ito H; Nishihara T; Hagihara S; Higashiyama T; Sasaki N; Sato Y; Itami K
    Chem Asian J; 2017 Jan; 12(2):233-238. PubMed ID: 27860278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.