BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21906262)

  • 61. Post-translational modifications of nuclear co-repressor RIP140: a therapeutic target for metabolic diseases.
    Mostaqul Huq MD; Gupta P; Wei LN
    Curr Med Chem; 2008; 15(4):386-92. PubMed ID: 18288993
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Lysine methylation of nuclear co-repressor receptor interacting protein 140.
    Huq MD; Ha SG; Barcelona H; Wei LN
    J Proteome Res; 2009 Mar; 8(3):1156-67. PubMed ID: 19216533
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Severe cognitive and motor coordination deficits in tenascin-R-deficient mice.
    Montag-Sallaz M; Montag D
    Genes Brain Behav; 2003 Feb; 2(1):20-31. PubMed ID: 12882316
    [TBL] [Abstract][Full Text] [Related]  

  • 64. RIP140, a Janus metabolic switch involved in defense functions.
    Chung HT
    Cell Mol Immunol; 2013 Jan; 10(1):7-9. PubMed ID: 23241901
    [No Abstract]   [Full Text] [Related]  

  • 65. Alterations of exploratory patterns induced by uncontrollable shock.
    Bruto V; Anisman H
    Behav Neural Biol; 1983 Mar; 37(2):302-16. PubMed ID: 6684913
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of nuclear receptor corepressor RIP140 in metabolic syndrome.
    Rosell M; Jones MC; Parker MG
    Biochim Biophys Acta; 2011 Aug; 1812(8):919-28. PubMed ID: 21193034
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Age-related changes in spontaneous behavior and learning in NMRI mice from middle to old age.
    Lamberty Y; Gower AJ
    Physiol Behav; 1992 Jan; 51(1):81-8. PubMed ID: 1741453
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Effects of receptor-interacting protein 140 gene over-expression on the migration and proliferation of neuroblastoma cells].
    Feng X; Yu W; Liang R; Shi C; Zhao Z; Guo J
    Zhonghua Yi Xue Za Zhi; 2014 Aug; 94(32):2540-3. PubMed ID: 25410929
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.
    Ohnishi H; Murata T; Kusakari S; Hayashi Y; Takao K; Maruyama T; Ago Y; Koda K; Jin FJ; Okawa K; Oldenborg PA; Okazawa H; Murata Y; Furuya N; Matsuda T; Miyakawa T; Matozaki T
    J Neurosci; 2010 Aug; 30(31):10472-83. PubMed ID: 20685990
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Transcriptional co-regulator RIP140: An important mediator of the inflammatory response and its associated diseases (Review).
    Yi ZJ; Gong JP; Zhang W
    Mol Med Rep; 2017 Aug; 16(2):994-1000. PubMed ID: 28586037
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Localisation of receptor interacting protein 140 (RIP140) within 100 kb of D21S13 on 21q11, a gene-poor region of the human genome.
    Katsanis N; Ives JH; Groet J; Nizetic D; Fisher EM
    Hum Genet; 1998 Feb; 102(2):221-3. PubMed ID: 9521594
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Genetically modified mice and cognition.
    Lipp HP; Wolfer DP
    Curr Opin Neurobiol; 1998 Apr; 8(2):272-80. PubMed ID: 9635213
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Turning down the heat: the potential role of RIP140 in inflammation.
    Chen WH
    Cell Mol Immunol; 2012 May; 9(3):195-6. PubMed ID: 22504951
    [No Abstract]   [Full Text] [Related]  

  • 74. Persistent changes in exploration and hyperactivity coexist with cognitive impairment in mice withdrawn from chronic cocaine.
    Mañas-Padilla MC; Ávila-Gámiz F; Gil-Rodríguez S; Ladrón de Guevara-Miranda D; Rodríguez de Fonseca F; Santín LJ; Castilla-Ortega E
    Physiol Behav; 2021 Oct; 240():113542. PubMed ID: 34332975
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Behavioural characterisation of the robotic mouse mutant.
    Oliver PL; Keays DA; Davies KE
    Behav Brain Res; 2007 Aug; 181(2):239-47. PubMed ID: 17532061
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Behavioural actions of prolactin locally applied into the hippocampus of adult female rats.
    Alvarez EO; Banzan AM
    J Neural Transm Gen Sect; 1994; 95(1):17-28. PubMed ID: 7857583
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessing Cognition in Mice.
    Hölter SM; Garrett L; Einicke J; Sperling B; Dirscherl P; Zimprich A; Fuchs H; Gailus-Durner V; Hrabě de Angelis M; Wurst W
    Curr Protoc Mouse Biol; 2015 Dec; 5(4):331-358. PubMed ID: 26629775
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental Neonatal Sepsis Causes Long-Term Cognitive Impairment.
    Comim CM; Bussmann RM; Simão SR; Ventura L; Freiberger V; Patrício JJ; Palmas D; Mendonça BP; Cassol OJ; Quevedo J
    Mol Neurobiol; 2016 Nov; 53(9):5928-5934. PubMed ID: 26510743
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The uterine environment enhances cognitive competence.
    Denenberg VH; Hoplight BJ; Mobraaten LE
    Neuroreport; 1998 Mar; 9(4):619-23. PubMed ID: 9559927
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Epigenetic mechanisms in stress and adaptation.
    Mifsud KR; Gutièrrez-Mecinas M; Trollope AF; Collins A; Saunderson EA; Reul JM
    Brain Behav Immun; 2011 Oct; 25(7):1305-15. PubMed ID: 21704151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.