These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21906279)

  • 41. Automatic Substitute Computed Tomography Generation and Contouring for Magnetic Resonance Imaging (MRI)-Alone External Beam Radiation Therapy From Standard MRI Sequences.
    Dowling JA; Sun J; Pichler P; Rivest-Hénault D; Ghose S; Richardson H; Wratten C; Martin J; Arm J; Best L; Chandra SS; Fripp J; Menk FW; Greer PB
    Int J Radiat Oncol Biol Phys; 2015 Dec; 93(5):1144-53. PubMed ID: 26581150
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cardiac atlas development and validation for automatic segmentation of cardiac substructures.
    Zhou R; Liao Z; Pan T; Milgrom SA; Pinnix CC; Shi A; Tang L; Yang J; Liu Y; Gomez D; Nguyen QN; Dabaja BS; Court L; Yang J
    Radiother Oncol; 2017 Jan; 122(1):66-71. PubMed ID: 27939201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas.
    Gay HA; Barthold HJ; O'Meara E; Bosch WR; El Naqa I; Al-Lozi R; Rosenthal SA; Lawton C; Lee WR; Sandler H; Zietman A; Myerson R; Dawson LA; Willett C; Kachnic LA; Jhingran A; Portelance L; Ryu J; Small W; Gaffney D; Viswanathan AN; Michalski JM
    Int J Radiat Oncol Biol Phys; 2012 Jul; 83(3):e353-62. PubMed ID: 22483697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contouring cardiac substructures on average intensity projection 4D-CT for lung cancer radiotherapy: A proposal of a heart valve contouring atlas.
    Socha J; Rygielska A; Uziębło-Życzkowska B; Chałubińska-Fendler J; Jurek A; Maciorowska M; Mielniczuk M; Pawłowski P; Tyc-Szczepaniak D; Krzesiński P; Kepka L
    Radiother Oncol; 2022 Feb; 167():261-268. PubMed ID: 34990727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.
    Martin S; Rodrigues G; Patil N; Bauman G; D'Souza D; Sexton T; Palma D; Louie AV; Khalvati F; Tizhoosh HR; Gaede S
    Int J Radiat Oncol Biol Phys; 2013 Jan; 85(1):95-100. PubMed ID: 22572076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer.
    Li W; Vassil A; Zhong Y; Xia P
    Med Phys; 2013 Nov; 40(11):111720. PubMed ID: 24320428
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated consensus contour building for prostate MRI.
    Khalvati F
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5534-7. PubMed ID: 25571248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration.
    Parker CC; Damyanovich A; Haycocks T; Haider M; Bayley A; Catton CN
    Radiother Oncol; 2003 Feb; 66(2):217-24. PubMed ID: 12648794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of a novel atlas for muscles of mastication to reduce inter observer variability in head and neck radiotherapy contouring.
    Hague C; Beasley W; Dixon L; Gaito S; Garcez K; Green A; Lee LW; Maranzano M; McPartlin A; Mistry H; Mullan D; Sykes AJ; Thomson D; Van Herk M; West CM; Slevin N
    Radiother Oncol; 2019 Jan; 130():56-61. PubMed ID: 30420234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A qualitative and a quantitative analysis of an auto-segmentation module for prostate cancer.
    Huyskens DP; Maingon P; Vanuytsel L; Remouchamps V; Roques T; Dubray B; Haas B; Kunz P; Coradi T; Bühlman R; Reddick R; Esch AV; Salamon E
    Radiother Oncol; 2009 Mar; 90(3):337-45. PubMed ID: 18812252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluating the Effectiveness of Deep Learning Contouring across Multiple Radiotherapy Centres.
    Walker Z; Bartley G; Hague C; Kelly D; Navarro C; Rogers J; South C; Temple S; Whitehurst P; Chuter R
    Phys Imaging Radiat Oncol; 2022 Oct; 24():121-128. PubMed ID: 36405563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy.
    Li Y; Wu W; Sun Y; Yu D; Zhang Y; Wang L; Wang Y; Zhang X; Lu Y
    Front Oncol; 2022; 12():945053. PubMed ID: 35982960
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study.
    Tao CJ; Yi JL; Chen NY; Ren W; Cheng J; Tung S; Kong L; Lin SJ; Pan JJ; Zhang GS; Hu J; Qi ZY; Ma J; Lu JD; Yan D; Sun Y
    Radiother Oncol; 2015 Jun; 115(3):407-11. PubMed ID: 26025546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center.
    D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC
    Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methodological approach to create an atlas using a commercial auto-contouring software.
    Casati M; Piffer S; Calusi S; Marrazzo L; Simontacchi G; Di Cataldo V; Greto D; Desideri I; Vernaleone M; Francolini G; Livi L; Pallotta S
    J Appl Clin Med Phys; 2020 Dec; 21(12):219-230. PubMed ID: 33236827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Deep Learning-Based Automated CT Segmentation of Prostate Cancer Anatomy for Radiation Therapy Planning-A Retrospective Multicenter Study.
    Kiljunen T; Akram S; Niemelä J; Löyttyniemi E; Seppälä J; Heikkilä J; Vuolukka K; Kääriäinen OS; Heikkilä VP; Lehtiö K; Nikkinen J; Gershkevitsh E; Borkvel A; Adamson M; Zolotuhhin D; Kolk K; Pang EPP; Tuan JKL; Master Z; Chua MLK; Joensuu T; Kononen J; Myllykangas M; Riener M; Mokka M; Keyriläinen J
    Diagnostics (Basel); 2020 Nov; 10(11):. PubMed ID: 33212793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.
    Stapleford LJ; Lawson JD; Perkins C; Edelman S; Davis L; McDonald MW; Waller A; Schreibmann E; Fox T
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):959-66. PubMed ID: 20231069
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of ATLAS-, machine learning-, and deep learning-based models.
    Bordigoni B; Trivellato S; Pellegrini R; Meregalli S; Bonetto E; Belmonte M; Castellano M; Panizza D; Arcangeli S; De Ponti E
    Phys Med; 2024 Sep; 125():104486. PubMed ID: 39098106
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reproducibility in contouring the neurovascular bundle for prostate cancer radiation therapy.
    Cassidy RJ; Nour SG; Liu T; Switchenko JM; Tian S; Ferris MJ; Press RH; Zhong J; Abugideiri M; Rossi PJ; Jani AB
    Pract Radiat Oncol; 2018; 8(3):e125-e131. PubMed ID: 28939353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.