BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21906375)

  • 1. Harnessing the self-harvesting capability of benthic cyanobacteria for use in benthic photobioreactors.
    Esson D; Wood SA; Packer MA
    AMB Express; 2011 Jul; 1(1):19. PubMed ID: 21906375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyphasic assessment of fresh-water benthic mat-forming cyanobacteria isolated from New Zealand.
    Heath MW; Wood SA; Ryan KG
    FEMS Microbiol Ecol; 2010 Jul; 73(1):95-109. PubMed ID: 20455945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Within-mat variability in anatoxin-a and homoanatoxin-a production among benthic Phormidium (cyanobacteria) strains.
    Wood SA; Smith FM; Heath MW; Palfroy T; Gaw S; Young RG; Ryan KG
    Toxins (Basel); 2012 Oct; 4(10):900-12. PubMed ID: 23162704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phormidium autumnale growth and anatoxin-a production under iron and copper stress.
    Harland FM; Wood SA; Moltchanova E; Williamson WM; Gaw S
    Toxins (Basel); 2013 Dec; 5(12):2504-21. PubMed ID: 24351714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rise of toxic benthic Phormidium proliferations: A review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity.
    McAllister TG; Wood SA; Hawes I
    Harmful Algae; 2016 May; 55():282-294. PubMed ID: 28073542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shotgun metagenomic sequencing reveals the full taxonomic, trophic, and functional diversity of a coral reef benthic cyanobacterial mat from Bonaire, Caribbean Netherlands.
    Cissell EC; McCoy SJ
    Sci Total Environ; 2021 Feb; 755(Pt 1):142719. PubMed ID: 33077235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, composition and metal removal potential of a Phormidium bigranulatum-dominated mat at elevated levels of cadmium.
    Kumar D; Yadav A; Gaur JP
    Aquat Toxicol; 2012 Jul; 116-117():24-33. PubMed ID: 22459410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation and anatoxin production of benthic cyanobacteria associated with canine mortalities along a stream-lake continuum.
    Johnston LH; Huang Y; Bermarija TD; Rafuse C; Zamlynny L; Bruce MR; Graham C; Comeau AM; Valadez-Cano C; Lawrence JE; Beach DG; Jamieson RC
    Sci Total Environ; 2024 Mar; 917():170476. PubMed ID: 38290679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network.
    Bouma-Gregson K; Kudela RM; Power ME
    PLoS One; 2018; 13(5):e0197669. PubMed ID: 29775481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the growth and biochemical composition of 20 species of cyanobacteria cultured in cylindrical photobioreactors.
    Baracho DH; Lombardi AT
    Microb Cell Fact; 2023 Feb; 22(1):36. PubMed ID: 36823519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Late Devonian marine anoxia challenged by benthic cyanobacterial mats.
    Kazmierczak J; Kremer B; Racki G
    Geobiology; 2012 Sep; 10(5):371-83. PubMed ID: 22882315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benthic cyanobacteria: A utility-centred field study.
    Gaget V; Almuhtaram H; Kibuye F; Hobson P; Zamyadi A; Wert E; Brookes JD
    Harmful Algae; 2022 Mar; 113():102185. PubMed ID: 35287926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers.
    Wood SA; Depree C; Brown L; McAllister T; Hawes I
    PLoS One; 2015; 10(10):e0141063. PubMed ID: 26479491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microcystin production in benthic mats of cyanobacteria in the Nile River and irrigation canals, Egypt.
    Mohamed ZA; el-Sharouny HM; Ali WS
    Toxicon; 2006 Apr; 47(5):584-90. PubMed ID: 16564062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toolbox for the sampling and monitoring of benthic cyanobacteria.
    Gaget V; Hobson P; Keulen A; Newton K; Monis P; Humpage AR; Weyrich LS; Brookes JD
    Water Res; 2020 Feb; 169():115222. PubMed ID: 31675609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactivity of benthic and picoplanktonic estuarine cyanobacteria on growth of photoautotrophs: inhibition versus stimulation.
    Lopes VR; Vasconcelos VM
    Mar Drugs; 2011; 9(5):790-802. PubMed ID: 21673889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benthic cyanobacteria: A source of cylindrospermopsin and microcystin in Australian drinking water reservoirs.
    Gaget V; Humpage AR; Huang Q; Monis P; Brookes JD
    Water Res; 2017 Nov; 124():454-464. PubMed ID: 28787682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a spectrofluorimetric tool (bbe BenthoTorch) for monitoring potentially toxic benthic cyanobacteria in rivers.
    Echenique-Subiabre I; Dalle C; Duval C; Heath MW; Couté A; Wood SA; Humbert JF; Quiblier C
    Water Res; 2016 Sep; 101():341-350. PubMed ID: 27286469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-scale outdoor trial of a cyanobacterial consortium at pH 11 in a photobioreactor at high latitude.
    Haines M; Vadlamani A; Daniel Loty Richardson W; Strous M
    Bioresour Technol; 2022 Jun; 354():127173. PubMed ID: 35452822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.