BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21906652)

  • 1. Catalytic and regulatory roles of divalent metal cations on the phosphoryl-transfer mechanism of ADP-dependent sugar kinases from hyperthermophilic archaea.
    Merino F; Rivas-Pardo JA; Caniuguir A; García I; Guixé V
    Biochimie; 2012 Feb; 94(2):516-24. PubMed ID: 21906652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ADP-dependent sugar kinase family: kinetic and evolutionary aspects.
    Guixé V; Merino F
    IUBMB Life; 2009 Jul; 61(7):753-61. PubMed ID: 19548321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of an ancestral ADP-dependent kinase with fructose-6P reveals key residues for binding, catalysis, and ligand-induced conformational changes.
    Muñoz SM; Castro-Fernandez V; Guixé V
    J Biol Chem; 2021; 296():100219. PubMed ID: 33839685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity evolution of the ADP-dependent sugar kinase family: in silico studies of the glucokinase/phosphofructokinase bifunctional enzyme from Methanocaldococcus jannaschii.
    Merino F; Guixé V
    FEBS J; 2008 Aug; 275(16):4033-44. PubMed ID: 18625008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence, expression, and characterization of the first archaeal ATP-dependent 6-phosphofructokinase, a non-allosteric enzyme related to the phosphofructokinase-B sugar kinase family, from the hyperthermophilic crenarchaeote Aeropyrum pernix.
    Hansen T; Schönheit P
    Arch Microbiol; 2001 Dec; 177(1):62-9. PubMed ID: 11797046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea.
    Dörr C; Zaparty M; Tjaden B; Brinkmann H; Siebers B
    J Biol Chem; 2003 May; 278(21):18744-53. PubMed ID: 12626506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.
    Labes A; Schönheit P
    Arch Microbiol; 2003 Jul; 180(1):69-75. PubMed ID: 12802482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifunctional ADP-dependent phosphofructokinase/glucokinase activity in the order Methanococcales--biochemical characterization of the mesophilic enzyme from Methanococcus maripaludis.
    Castro-Fernandez V; Bravo-Moraga F; Herrera-Morande A; Guixe V
    FEBS J; 2014 Apr; 281(8):2017-29. PubMed ID: 24860874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure, SAXS and kinetic mechanism of hyperthermophilic ADP-dependent glucokinase from Thermococcus litoralis reveal a conserved mechanism for catalysis.
    Rivas-Pardo JA; Herrera-Morande A; Castro-Fernandez V; Fernandez FJ; Vega MC; Guixé V
    PLoS One; 2013; 8(6):e66687. PubMed ID: 23818958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique sugar metabolism and novel enzymes of hyperthermophilic archaea.
    Sakuraba H; Goda S; Ohshima T
    Chem Rec; 2004; 3(5):281-7. PubMed ID: 14762828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADP-dependent phosphofructokinases from the archaeal order Methanosarcinales display redundant glucokinase activity.
    Zamora RA; Gonzalez-Órdenes F; Castro-Fernández V; Guixé V
    Arch Biochem Biophys; 2017 Nov; 633():85-92. PubMed ID: 28919057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal binding sites of H(+)-ATPase from chloroplast and Bacillus PS3 studied by EPR and pulsed EPR spectroscopy of bound manganese(II).
    Buy C; Girault G; Zimmermann JL
    Biochemistry; 1996 Jul; 35(30):9880-91. PubMed ID: 8703962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases.
    Lykke-Andersen J; Garrett RA; Kjems J
    EMBO J; 1997 Jun; 16(11):3272-81. PubMed ID: 9214642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the functional roles of the conserved NXXE and HXE motifs of the ADP-dependent glucokinase from Thermococcus litoralis.
    Abarca-Lagunas MJ; Rivas-Pardo JA; Ramírez-Sarmiento CA; Guixé V
    FEBS Lett; 2015 Oct; 589(21):3271-6. PubMed ID: 26428088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon.
    Ito S; Fushinobu S; Yoshioka I; Koga S; Matsuzawa H; Wakagi T
    Structure; 2001 Mar; 9(3):205-14. PubMed ID: 11286887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a catalytic Mg2+ ion and effect of phosphate on the activity of Escherichia coli phosphofructokinase-2: regulatory properties of a ribokinase family member.
    Parducci RE; Cabrera R; Baez M; Guixé V
    Biochemistry; 2006 Aug; 45(30):9291-9. PubMed ID: 16866375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes.
    Ota H; Sakasegawa S; Yasuda Y; Imamura S; Tamura T
    FEBS J; 2008 Dec; 275(23):5865-72. PubMed ID: 19021762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divalent ion effects and insights into the catalytic mechanism of protein tyrosine kinase Csk.
    Grace MR; Walsh CT; Cole PA
    Biochemistry; 1997 Feb; 36(7):1874-81. PubMed ID: 9048573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal ion binding and enzymatic mechanism of Methanococcus jannaschii RNase HII.
    Lai B; Li Y; Cao A; Lai L
    Biochemistry; 2003 Jan; 42(3):785-91. PubMed ID: 12534291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.