These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21906772)

  • 1. Shear-horizontal waves in a rotated Y-cut quartz plate in contact with a viscous fluid.
    Sun J; Du J; Yang J; Wang J
    Ultrasonics; 2012 Jan; 52(1):133-7. PubMed ID: 21906772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-horizontal waves in a rotated Y-cut quartz plate with an imperfectly bonded mass layer.
    Chen Y; Du J; Wang J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Mar; 58(3):616-22. PubMed ID: 21429853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mass layer stiffness on propagation of thickness-twist waves in rotated Y-cut quartz crystal plates.
    Yang Z; Hu Y; Yang J
    Ultrasonics; 2009 May; 49(4-5):401-3. PubMed ID: 19081122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations.
    Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The properties of thickness-twist (TT) wave modes in a rotated Y-cut quartz plate with a functionally graded material top layer.
    Wang B; Qian Z; Li N; Sarraf H
    Ultrasonics; 2016 Jan; 64():62-8. PubMed ID: 26254981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a liquid layer on thickness-shear vibrations of rectangular AT-cut quartz plates.
    Lee PC; Huang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 May; 49(5):604-11. PubMed ID: 12046936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of air resistance on AT-cut quartz thickness-shear resonators.
    Chen Y; Wang J; Du J; Zhang W; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):402-7. PubMed ID: 23357914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate.
    Wang J; Du J; Li Z; Lin J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e935-9. PubMed ID: 16814834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The viscous effects on shear horizontal surface acoustic waves in semi-infinite superlattices.
    Chen S; Lin S; Wang Z
    Ultrasonics; 2011 Jan; 51(1):29-33. PubMed ID: 20627275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The propagation of horizontally polarized shear waves in plates bordered with viscous liquid.
    Gitis A; Sauer DU
    Ultrasonics; 2016 Sep; 71():264-270. PubMed ID: 27423968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency shear horizontal plate acoustic wave devices.
    Vohra G; Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA
    Ultrasonics; 2009 Dec; 49(8):760-4. PubMed ID: 19577781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the viscosity-density product using multiple reflections of ultrasonic shear horizontal waves.
    Greenwood MS; Adamson JD; Bond LJ
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1031-6. PubMed ID: 16793108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates.
    Yong YK; Wang J; Imai T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thickness-twist and face-shear waves in piezoelectric plates of monoclinic crystals.
    Zhu J; Chen W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2763-7. PubMed ID: 23443714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis of nonlinear vibrations of coupled thickness-shear and flexural modes of quartz crystal plates with the homotopy analysis method.
    Wu R; Wang J; Du J; Huang D; Yan W; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):30-9. PubMed ID: 22293733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of piezoelectric bulk-acoustic-wave resonators as detectors in viscous conductive liquids.
    Josse F; Shana ZA; Radtke DE; Haworth DT
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):359-68. PubMed ID: 18285053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear coupling between thickness- shear and thickness-stretch modes in a rotated Y-cut quartz resonator.
    Yang Z; Hu Y; Wang J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):220-4. PubMed ID: 19213649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste.
    Wang X; Subramaniam KV; Lin F
    Ultrasonics; 2010 Jun; 50(7):726-38. PubMed ID: 20231025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical-mechanical theory of rheology: Lennard-Jones fluids.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Chem Phys; 2005 Dec; 123(23):234507. PubMed ID: 16392931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators.
    Chen G; Wu R; Wang J; Du J; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.