These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 21906805)
1. Effect of initial cell seeding density on 3D-engineered silk fibroin scaffolds for articular cartilage tissue engineering. Talukdar S; Nguyen QT; Chen AC; Sah RL; Kundu SC Biomaterials; 2011 Dec; 32(34):8927-37. PubMed ID: 21906805 [TBL] [Abstract][Full Text] [Related]
2. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Bhardwaj N; Nguyen QT; Chen AC; Kaplan DL; Sah RL; Kundu SC Biomaterials; 2011 Sep; 32(25):5773-81. PubMed ID: 21601277 [TBL] [Abstract][Full Text] [Related]
3. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related]
4. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. Sawatjui N; Limpaiboon T; Schrobback K; Klein T J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
7. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. Saha S; Kundu B; Kirkham J; Wood D; Kundu SC; Yang XB PLoS One; 2013; 8(11):e80004. PubMed ID: 24260335 [TBL] [Abstract][Full Text] [Related]
8. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Li T; Song X; Weng C; Wang X; Gu L; Gong X; Wei Q; Duan X; Yang L; Chen C Int J Biol Macromol; 2019 Sep; 137():382-391. PubMed ID: 31271796 [TBL] [Abstract][Full Text] [Related]
9. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
10. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
11. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Li Z; Wu N; Cheng J; Sun M; Yang P; Zhao F; Zhang J; Duan X; Fu X; Zhang J; Hu X; Chen H; Ao Y Theranostics; 2020; 10(11):5090-5106. PubMed ID: 32308770 [TBL] [Abstract][Full Text] [Related]
12. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
13. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD]. Sun K; Nian Z; Xu C; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359 [TBL] [Abstract][Full Text] [Related]
14. Silk Fiber-Reinforced Hyaluronic Acid-Based Hydrogel for Cartilage Tissue Engineering. Weitkamp JT; Wöltje M; Nußpickel B; Schmidt FN; Aibibu D; Bayer A; Eglin D; Armiento AR; Arnold P; Cherif C; Lucius R; Smeets R; Kurz B; Behrendt P Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807323 [TBL] [Abstract][Full Text] [Related]
15. Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Patra C; Talukdar S; Novoyatleva T; Velagala SR; Mühlfeld C; Kundu B; Kundu SC; Engel FB Biomaterials; 2012 Mar; 33(9):2673-80. PubMed ID: 22240510 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Foss C; Merzari E; Migliaresi C; Motta A Biomacromolecules; 2013 Jan; 14(1):38-47. PubMed ID: 23134349 [TBL] [Abstract][Full Text] [Related]
17. Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Cengiz IF; Maia FR; da Silva Morais A; Silva-Correia J; Pereira H; Canadas RF; Espregueira-Mendes J; Kwon IK; Reis RL; Oliveira JM Biofabrication; 2020 Mar; 12(2):025028. PubMed ID: 32069441 [TBL] [Abstract][Full Text] [Related]
18. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo]. Duan W; Da H; Wang W; Lü S; Xiong Z; Liu J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):513-9. PubMed ID: 23879085 [TBL] [Abstract][Full Text] [Related]
19. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162 [TBL] [Abstract][Full Text] [Related]