These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 21906805)
21. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
22. Photopolymerized maleilated chitosan/methacrylated silk fibroin micro/nanocomposite hydrogels as potential scaffolds for cartilage tissue engineering. Zhou Y; Liang K; Zhao S; Zhang C; Li J; Yang H; Liu X; Yin X; Chen D; Xu W; Xiao P Int J Biol Macromol; 2018 Mar; 108():383-390. PubMed ID: 29225174 [TBL] [Abstract][Full Text] [Related]
23. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage. Ng KW; Kugler LE; Doty SB; Ateshian GA; Hung CT Osteoarthritis Cartilage; 2009 Feb; 17(2):220-7. PubMed ID: 18801665 [TBL] [Abstract][Full Text] [Related]
24. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Huang BJ; Hu JC; Athanasiou KA Acta Biomater; 2016 Oct; 43():150-159. PubMed ID: 27475530 [TBL] [Abstract][Full Text] [Related]
25. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586 [TBL] [Abstract][Full Text] [Related]
26. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188 [TBL] [Abstract][Full Text] [Related]
27. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Malda J; Woodfield TB; van der Vloodt F; Wilson C; Martens DE; Tramper J; van Blitterswijk CA; Riesle J Biomaterials; 2005 Jan; 26(1):63-72. PubMed ID: 15193881 [TBL] [Abstract][Full Text] [Related]
28. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
29. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
30. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold. Li T; Liu B; Jiang Y; Lou Y; Chen K; Zhang D Biomed Mater; 2020 Dec; 16(1):015025. PubMed ID: 33181491 [TBL] [Abstract][Full Text] [Related]
32. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905 [TBL] [Abstract][Full Text] [Related]
33. Engineering biomechanically functional neocartilage derived from expanded articular chondrocytes through the manipulation of cell-seeding density and dexamethasone concentration. Huang BJ; Huey DJ; Hu JC; Athanasiou KA J Tissue Eng Regen Med; 2017 Aug; 11(8):2323-2332. PubMed ID: 27138113 [TBL] [Abstract][Full Text] [Related]
35. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
36. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. El-Ayoubi R; DeGrandpré C; DiRaddo R; Yousefi AM; Lavigne P J Biomater Appl; 2011 Jan; 25(5):429-44. PubMed ID: 20042429 [TBL] [Abstract][Full Text] [Related]
37. Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Kim DK; In Kim J; Sim BR; Khang G Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():571-578. PubMed ID: 28576023 [TBL] [Abstract][Full Text] [Related]
38. Nonmulberry Silk Fibroin Scaffold Shows Superior Osteoconductivity Than Mulberry Silk Fibroin in Calvarial Bone Regeneration. Sahu N; Baligar P; Midha S; Kundu B; Bhattacharjee M; Mukherjee S; Mukherjee S; Maushart F; Das S; Loparic M; Kundu SC; Ghosh S; Mukhopadhyay A Adv Healthc Mater; 2015 Aug; 4(11):1709-21. PubMed ID: 26084249 [TBL] [Abstract][Full Text] [Related]
39. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds. Pfeiffer E; Vickers SM; Frank E; Grodzinsky AJ; Spector M Osteoarthritis Cartilage; 2008 Oct; 16(10):1237-44. PubMed ID: 18406634 [TBL] [Abstract][Full Text] [Related]
40. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]