These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 21906900)
1. Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination of uric acid. Wang Y; Hasebe Y J Pharm Biomed Anal; 2012 Jan; 57():125-32. PubMed ID: 21906900 [TBL] [Abstract][Full Text] [Related]
2. Carbon-felt-based bioelectrocatalytic flow-detectors: optimization of the adsorption conditions of horseradish peroxidase and thionine onto carbon-felt for highly sensitive amperometric determination of H2O2. Wang Y; Hasebe Y Anal Sci; 2011; 27(4):401. PubMed ID: 21478616 [TBL] [Abstract][Full Text] [Related]
3. Glucose oxidase, horseradish peroxidase and phenothiazine dyes-co-adsorbed carbon felt-based amperometric flow-biosensor for glucose. Jiao Z; Kuang L; Komori M; Hirono M; Komuro R; Wang Y; Hasebe Y Anal Methods; 2024 Aug; 16(34):5883-5895. PubMed ID: 39157883 [TBL] [Abstract][Full Text] [Related]
4. Carbon-felt-based bioelectrocatalytic flow-detectors: role of ultrasound irradiation during the adsorption of horseradish peroxidase and thionine for a highly sensitive amperometric determination of H2O2. Wang Y; Hasebe Y Anal Sci; 2011; 27(6):605-12. PubMed ID: 21666357 [TBL] [Abstract][Full Text] [Related]
5. Carbon felt-based bioelectrocatalytic flow detectors: highly sensitive amperometric determination of hydrogen peroxide using adsorbed peroxidase and thionine. Hasebe Y; Imai R; Hirono M; Uchiyama S Anal Sci; 2007 Jan; 23(1):71-4. PubMed ID: 17213627 [TBL] [Abstract][Full Text] [Related]
6. Horseradish peroxidase-catalyzed polymerization of L-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid. Dai M; Huang T; Chao L; Xie Q; Tan Y; Chen C; Meng W Talanta; 2016; 149():117-123. PubMed ID: 26717822 [TBL] [Abstract][Full Text] [Related]
7. Low-potential detection of endogenous and physiological uric acid at uricase-thionine-single-walled carbon nanotube modified electrodes. Chen D; Wang Q; Jin J; Wu P; Wang H; Yu S; Zhang H; Cai C Anal Chem; 2010 Mar; 82(6):2448-55. PubMed ID: 20163156 [TBL] [Abstract][Full Text] [Related]
8. An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Cete S; Yaşar A; Arslan F Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):367-80. PubMed ID: 16809136 [TBL] [Abstract][Full Text] [Related]
9. Carbon Felt-Based Bioelectrocatalytic Flow-Through Detectors: 2,6-Dichlorophenol Indophenol and Peroxidase Coadsorbed Carbon-Felt for Flow-Amperometric Determination of Hydrogen Peroxide. Wang Y; Hasebe Y Materials (Basel); 2014 Feb; 7(2):1142-1154. PubMed ID: 28788505 [TBL] [Abstract][Full Text] [Related]
10. A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. Ghosh T; Sarkar P; Turner AP Bioelectrochemistry; 2015 Apr; 102():1-9. PubMed ID: 25461755 [TBL] [Abstract][Full Text] [Related]
11. An amperomertic uric acid biosensor based on immobilization of uricase onto polyaniline-multiwalled carbon nanotube composite film. Bhambi M; Sumana G; Malhotra BD; Pundir CS Artif Cells Blood Substit Immobil Biotechnol; 2010 Aug; 38(4):178-85. PubMed ID: 20367113 [TBL] [Abstract][Full Text] [Related]
12. Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite. Rawal R; Chawla S; Chauhan N; Dahiya T; Pundir CS Int J Biol Macromol; 2012 Jan; 50(1):112-8. PubMed ID: 22020190 [TBL] [Abstract][Full Text] [Related]
13. A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Azmi NE; Ramli NI; Abdullah J; Abdul Hamid MA; Sidek H; Abd Rahman S; Ariffin N; Yusof NA Biosens Bioelectron; 2015 May; 67():129-33. PubMed ID: 25113659 [TBL] [Abstract][Full Text] [Related]
14. Polyaniline-uricase biosensor prepared with template process. Kan J; Pan X; Chen C Biosens Bioelectron; 2004 Jul; 19(12):1635-40. PubMed ID: 15142597 [TBL] [Abstract][Full Text] [Related]
15. An amperometric uric acid biosensor based on modified Ir-C electrode. Luo YC; Do JS; Liu CC Biosens Bioelectron; 2006 Oct; 22(4):482-8. PubMed ID: 16908130 [TBL] [Abstract][Full Text] [Related]
16. One-step screen-printed electrode modified in its bulk with HRP based on direct electron transfer for hydrogen peroxide detection in flow injection mode. Ledru S; Ruillé N; Boujtita M Biosens Bioelectron; 2006 Feb; 21(8):1591-8. PubMed ID: 16157480 [TBL] [Abstract][Full Text] [Related]
17. Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis. Kanyong P; Pemberton RM; Jackson SK; Hart JP Anal Biochem; 2012 Sep; 428(1):39-43. PubMed ID: 22705172 [TBL] [Abstract][Full Text] [Related]
18. An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. Chauhan N; Pundir CS Anal Biochem; 2011 Jun; 413(2):97-103. PubMed ID: 21315682 [TBL] [Abstract][Full Text] [Related]
19. An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Numnuam A; Thavarungkul P; Kanatharana P Anal Bioanal Chem; 2014 Jun; 406(15):3763-72. PubMed ID: 24718436 [TBL] [Abstract][Full Text] [Related]
20. Amperometric biosensor for hydrogen peroxide based on ferrocene-bovine serum albumin and multiwall carbon nanotube modified ormosil composite. Tripathi VS; Kandimalla VB; Ju H Biosens Bioelectron; 2006 Feb; 21(8):1529-35. PubMed ID: 16099155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]