These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 21906956)

  • 1. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer.
    Trausch JJ; Ceres P; Reyes FE; Batey RT
    Structure; 2011 Oct; 19(10):1413-23. PubMed ID: 21906956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A disconnect between high-affinity binding and efficient regulation by antifolates and purines in the tetrahydrofolate riboswitch.
    Trausch JJ; Batey RT
    Chem Biol; 2014 Feb; 21(2):205-16. PubMed ID: 24388757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation.
    Wilt HM; Yu P; Tan K; Wang YX; Stagno JR
    J Struct Biol; 2021 Mar; 213(1):107703. PubMed ID: 33571639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of ligand identification for riboswitch candidates.
    Meyer MM; Hammond MC; Salinas Y; Roth A; Sudarsan N; Breaker RR
    RNA Biol; 2011; 8(1):5-10. PubMed ID: 21317561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive self-assembly of tectoRNAs with loop-receptor interactions from the tetrahydrofolate (THF) riboswitch.
    Mitchell C; Polanco JA; DeWald L; Kress D; Jaeger L; Grabow WW
    Nucleic Acids Res; 2019 Jul; 47(12):6439-6451. PubMed ID: 31045210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch.
    Huang L; Ishibe-Murakami S; Patel DJ; Serganov A
    Proc Natl Acad Sci U S A; 2011 Sep; 108(36):14801-6. PubMed ID: 21873197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation.
    Blouin S; Chinnappan R; Lafontaine DA
    Nucleic Acids Res; 2011 Apr; 39(8):3373-87. PubMed ID: 21169337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into translation regulation by the THF-II riboswitch.
    Xu L; Xiao Y; Zhang J; Fang X
    Nucleic Acids Res; 2023 Jan; 51(2):952-965. PubMed ID: 36620887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic regulation mechanism of the yjdF riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Theor Biol; 2018 Feb; 439():152-159. PubMed ID: 29223402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A loop loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control.
    Blouin S; Lafontaine DA
    RNA; 2007 Aug; 13(8):1256-67. PubMed ID: 17585050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine.
    Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK
    Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.