BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1387 related articles for article (PubMed ID: 21906983)

  • 1. Systematic and quantitative assessment of the ubiquitin-modified proteome.
    Kim W; Bennett EJ; Huttlin EL; Guo A; Li J; Possemato A; Sowa ME; Rad R; Rush J; Comb MJ; Harper JW; Gygi SP
    Mol Cell; 2011 Oct; 44(2):325-40. PubMed ID: 21906983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ubiquitin diGLY Proteomics as an Approach to Identify and Quantify the Ubiquitin-Modified Proteome.
    Fulzele A; Bennett EJ
    Methods Mol Biol; 2018; 1844():363-384. PubMed ID: 30242721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive method for detecting ubiquitinated substrates using TR-TUBE.
    Yoshida Y; Saeki Y; Murakami A; Kawawaki J; Tsuchiya H; Yoshihara H; Shindo M; Tanaka K
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4630-5. PubMed ID: 25827227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of ubiquitylation site detection by Orbitrap mass spectrometry.
    van der Wal L; Bezstarosti K; Sap KA; Dekkers DHW; Rijkers E; Mientjes E; Elgersma Y; Demmers JAA
    J Proteomics; 2018 Feb; 172():49-56. PubMed ID: 29122726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Proteomics Reveals Extensive Changes in the Ubiquitinome after Perturbation of the Proteasome by Targeted dsRNA-Mediated Subunit Knockdown in Drosophila.
    Sap KA; Bezstarosti K; Dekkers DHW; Voets O; Demmers JAA
    J Proteome Res; 2017 Aug; 16(8):2848-2862. PubMed ID: 28665616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ubiquitinome Profiling Reveals in Vivo UBE2D3 Targets and Implicates UBE2D3 in Protein Quality Control.
    Yalçin Z; Koot D; Bezstarosti K; Salas-Lloret D; Bleijerveld OB; Boersma V; Falcone M; González-Prieto R; Altelaar M; Demmers JAA; Jacobs JJL
    Mol Cell Proteomics; 2023 Jun; 22(6):100548. PubMed ID: 37059365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Proteome and Ubiquitinome Changes in the Soluble and Insoluble Fractions of Q175 Huntington Mice Brains.
    Sap KA; Guler AT; Bezstarosti K; Bury AE; Juenemann K; Demmers JA; Reits EA
    Mol Cell Proteomics; 2019 Sep; 18(9):1705-1720. PubMed ID: 31138642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles.
    Wagner SA; Beli P; Weinert BT; Nielsen ML; Cox J; Mann M; Choudhary C
    Mol Cell Proteomics; 2011 Oct; 10(10):M111.013284. PubMed ID: 21890473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology.
    Hansen FM; Tanzer MC; Brüning F; Bludau I; Stafford C; Schulman BA; Robles MS; Karayel O; Mann M
    Nat Commun; 2021 Jan; 12(1):254. PubMed ID: 33431886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction.
    Nguyen HC; Wang W; Xiong Y
    Subcell Biochem; 2017; 83():323-347. PubMed ID: 28271482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding cullin-RING E3 biology through proteomics-based substrate identification.
    Harper JW; Tan MK
    Mol Cell Proteomics; 2012 Dec; 11(12):1541-50. PubMed ID: 22962057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the ubiquitin-modified proteome to monitor protein homeostasis function.
    Carrano AC; Bennett EJ
    Mol Cell Proteomics; 2013 Dec; 12(12):3521-31. PubMed ID: 23704779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hsp90 inhibition induces both protein-specific and global changes in the ubiquitinome.
    Quadroni M; Potts A; Waridel P
    J Proteomics; 2015 Apr; 120():215-29. PubMed ID: 25782750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome-wide identification of ubiquitylation sites by conjugation of engineered lysine-less ubiquitin.
    Oshikawa K; Matsumoto M; Oyamada K; Nakayama KI
    J Proteome Res; 2012 Feb; 11(2):796-807. PubMed ID: 22053931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues.
    Wagner SA; Beli P; Weinert BT; Schölz C; Kelstrup CD; Young C; Nielsen ML; Olsen JV; Brakebusch C; Choudhary C
    Mol Cell Proteomics; 2012 Dec; 11(12):1578-85. PubMed ID: 22790023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin ligase substrate identification through quantitative proteomics at both the protein and peptide levels.
    Lee KA; Hammerle LP; Andrews PS; Stokes MP; Mustelin T; Silva JC; Black RA; Doedens JR
    J Biol Chem; 2011 Dec; 286(48):41530-41538. PubMed ID: 21987572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cullin 5-RING E3 ubiquitin ligases, new therapeutic targets?
    Lamsoul I; Uttenweiler-Joseph S; Moog-Lutz C; Lutz PG
    Biochimie; 2016 Mar; 122():339-47. PubMed ID: 26253693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold for ubiquitin in Vancouver: First Conference on Proteomics of Protein Degradation and Ubiquitin Pathways held June 6-8, 2010 in Vancouver, University of British Columbia, organized By Lan Huang, Thibault Mayor, and Peipei Ping.
    Kaiser P; Mayor T
    Mol Cell Proteomics; 2011 May; 10(5):R110.003863. PubMed ID: 20834021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of proteome arrays to globally identify substrates for E3 ubiquitin ligases.
    Persaud A; Rotin D
    Methods Mol Biol; 2011; 759():215-24. PubMed ID: 21863490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics.
    Low TY; Magliozzi R; Guardavaccaro D; Heck AJ
    Proteomics; 2013 Feb; 13(3-4):526-37. PubMed ID: 23019148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 70.