These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Watanabe D; Araki Y; Zhou Y; Maeya N; Akao T; Shimoi H Appl Environ Microbiol; 2012 Jun; 78(11):4008-16. PubMed ID: 22447585 [TBL] [Abstract][Full Text] [Related]
6. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. Urbanczyk H; Noguchi C; Wu H; Watanabe D; Akao T; Takagi H; Shimoi H J Biosci Bioeng; 2011 Jul; 112(1):44-8. PubMed ID: 21459038 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice. Ramirez-Córdova J; Drnevich J; Madrigal-Pulido JA; Arrizon J; Allen K; Martínez-Velázquez M; Alvarez-Maya I Antonie Van Leeuwenhoek; 2012 Aug; 102(2):247-55. PubMed ID: 22535436 [TBL] [Abstract][Full Text] [Related]
9. Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Watanabe D; Zhou Y; Hirata A; Sugimoto Y; Takagi K; Akao T; Ohya Y; Takagi H; Shimoi H Appl Environ Microbiol; 2016 Jan; 82(1):340-51. PubMed ID: 26497456 [TBL] [Abstract][Full Text] [Related]
10. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p. Watanabe D; Wu H; Noguchi C; Zhou Y; Akao T; Shimoi H Appl Environ Microbiol; 2011 Feb; 77(3):934-41. PubMed ID: 21131516 [TBL] [Abstract][Full Text] [Related]
12. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Watanabe D; Hashimoto N; Mizuno M; Zhou Y; Akao T; Shimoi H Biosci Biotechnol Biochem; 2013; 77(11):2255-62. PubMed ID: 24200791 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. Izawa S; Takemura R; Ikeda K; Fukuda K; Wakai Y; Inoue Y Appl Microbiol Biotechnol; 2005 Nov; 69(1):86-91. PubMed ID: 15803312 [TBL] [Abstract][Full Text] [Related]
14. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae. Blasco L; Veiga-Crespo P; Villa TG Yeast; 2011 Jun; 28(6):437-51. PubMed ID: 21425329 [TBL] [Abstract][Full Text] [Related]
15. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR Watanabe D; Kumano M; Sugimoto Y; Ito M; Ohashi M; Sunada K; Takahashi T; Yamada T; Takagi H J Biosci Bioeng; 2018 Nov; 126(5):624-629. PubMed ID: 29861316 [TBL] [Abstract][Full Text] [Related]
16. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing. Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715 [TBL] [Abstract][Full Text] [Related]
17. Construction and analysis of self-cloning sake yeasts that accumulate proline. Takagi H; Matsui F; Kawaguchi A; Wu H; Shimoi H; Kubo Y J Biosci Bioeng; 2007 Apr; 103(4):377-80. PubMed ID: 17502281 [TBL] [Abstract][Full Text] [Related]
18. Stable N-acetyltransferase Mpr1 improves ethanol productivity in the sake yeast Saccharomyces cerevisiae. Ohashi M; Nasuno R; Watanabe D; Takagi H J Ind Microbiol Biotechnol; 2019 Jul; 46(7):1039-1045. PubMed ID: 30963326 [TBL] [Abstract][Full Text] [Related]
19. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast. Ohdate T; Omura F; Hatanaka H; Zhou Y; Takagi M; Goshima T; Akao T; Ono E PLoS One; 2018; 13(6):e0198744. PubMed ID: 29894505 [TBL] [Abstract][Full Text] [Related]
20. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]