These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21906996)

  • 21. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.
    Kitagaki H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):145-53. PubMed ID: 19476438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing.
    Takao Y; Takahashi T; Yamada T; Goshima T; Isogai A; Sueno K; Fujii T; Akao T
    J Biosci Bioeng; 2018 Nov; 126(5):617-623. PubMed ID: 29884321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.
    Shiroma S; Jayakody LN; Horie K; Okamoto K; Kitagaki H
    Appl Environ Microbiol; 2014 Feb; 80(3):1002-12. PubMed ID: 24271183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity.
    Tamura H; Okada H; Kume K; Koyano T; Goshima T; Nakamura R; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D
    Biosci Biotechnol Biochem; 2015; 79(7):1191-9. PubMed ID: 25787154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation of a non-urea-producing sake yeast strain carrying a discriminable molecular marker.
    Kuribayashi T; Tamura H; Sato K; Nabekura Y; Aoki T; Anzawa Y; Katsumata K; Ohdaira S; Yamashita S; Kume K; Kaneoke M; Watanabe K; Hirata D
    Biosci Biotechnol Biochem; 2013; 77(12):2505-9. PubMed ID: 24317072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation.
    Izawa S; Ikeda K; Kita T; Inoue Y
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):560-5. PubMed ID: 16391921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation.
    Watanabe D; Takagi H
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1061-1068. PubMed ID: 28485209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio.
    Takahashi T; Ohara Y; Sueno K
    J Biosci Bioeng; 2017 Jun; 123(6):707-713. PubMed ID: 28286120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global gene expression analysis of yeast cells during sake brewing.
    Wu H; Zheng X; Araki Y; Sahara H; Takagi H; Shimoi H
    Appl Environ Microbiol; 2006 Nov; 72(11):7353-8. PubMed ID: 16997994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of novel and conserved functional and structural elements of the G1 cyclin Cln3 important for interactions with the CDK Cdc28 in Saccharomyces cerevisiae.
    Miller ME; Cross FR; Groeger AL; Jameson KL
    Yeast; 2005 Oct; 22(13):1021-36. PubMed ID: 16200502
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae.
    Jung YJ; Park HD
    Biotechnol Lett; 2005 Dec; 27(23-24):1855-9. PubMed ID: 16328979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.
    Noguchi C; Watanabe D; Zhou Y; Akao T; Shimoi H
    Appl Environ Microbiol; 2012 Jan; 78(2):385-92. PubMed ID: 22057870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of ADH1 and HXT1 genes in the yeast Saccharomyces cerevisiae improves the fermentative efficiency during tequila elaboration.
    Gutiérrez-Lomelí M; Torres-Guzmán JC; González-Hernández GA; Cira-Chávez LA; Pelayo-Ortiz C; Ramírez-Córdova Jde J
    Antonie Van Leeuwenhoek; 2008 May; 93(4):363-71. PubMed ID: 18240006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical analysis of yeast protein interaction network during the sake brewing process.
    Mirzarezaee M; Sadeghi M; Araabi BN
    J Microbiol; 2011 Dec; 49(6):965-73. PubMed ID: 22203560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a mutation causing a defective spindle assembly checkpoint in high ethyl caproate-producing sake yeast strain K1801.
    Goshima T; Nakamura R; Kume K; Okada H; Ichikawa E; Tamura H; Hasuda H; Inahashi M; Okazaki N; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1657-62. PubMed ID: 27191586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct mating between diploid sake strains of Saccharomyces cerevisiae.
    Hashimoto S; Aritomi K; Minohara T; Nishizawa Y; Hoshida H; Kashiwagi S; Akada R
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):689-96. PubMed ID: 15988574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristic analysis of the fermentation and sporulation properties of the traditional sake yeast strain Hiroshima no.6.
    Yamasaki R; Goshima T; Oba K; Isogai A; Ohdoi R; Hirata D; Akao T
    Biosci Biotechnol Biochem; 2020 Apr; 84(4):842-853. PubMed ID: 31868109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interruption of glycerol pathway in industrial alcoholic yeasts to improve the ethanol production.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    Appl Microbiol Biotechnol; 2009 Feb; 82(2):287-92. PubMed ID: 19018525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance.
    Vianna CR; Silva CL; Neves MJ; Rosa CA
    Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.