BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 21907221)

  • 1. Signaling pathways underlying the rapid antidepressant actions of ketamine.
    Duman RS; Li N; Liu RJ; Duric V; Aghajanian G
    Neuropharmacology; 2012 Jan; 62(1):35-41. PubMed ID: 21907221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neurotrophic hypothesis of depression: role of synaptogenesis in the actions of NMDA receptor antagonists.
    Duman RS; Li N
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1601):2475-84. PubMed ID: 22826346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists.
    Li N; Lee B; Liu RJ; Banasr M; Dwyer JM; Iwata M; Li XY; Aghajanian G; Duman RS
    Science; 2010 Aug; 329(5994):959-64. PubMed ID: 20724638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Duman RS
    Pharmacol Biochem Behav; 2020 Jan; 188():172837. PubMed ID: 31830487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants.
    Dwyer JM; Duman RS
    Biol Psychiatry; 2013 Jun; 73(12):1189-98. PubMed ID: 23295207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses.
    Voleti B; Navarria A; Liu RJ; Banasr M; Li N; Terwilliger R; Sanacora G; Eid T; Aghajanian G; Duman RS
    Biol Psychiatry; 2013 Nov; 74(10):742-9. PubMed ID: 23751205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function.
    Duman RS; Shinohara R; Fogaça MV; Hare B
    Mol Psychiatry; 2019 Dec; 24(12):1816-1832. PubMed ID: 30894661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spine synapse remodeling in the pathophysiology and treatment of depression.
    Duman CH; Duman RS
    Neurosci Lett; 2015 Aug; 601():20-9. PubMed ID: 25582786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GluN2B-containing NMDA receptors regulate depression-like behavior and are critical for the rapid antidepressant actions of ketamine.
    Miller OH; Yang L; Wang CC; Hargroder EA; Zhang Y; Delpire E; Hall BJ
    Elife; 2014 Oct; 3():e03581. PubMed ID: 25340958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GLYX-13 Produces Rapid Antidepressant Responses with Key Synaptic and Behavioral Effects Distinct from Ketamine.
    Liu RJ; Duman C; Kato T; Hare B; Lopresto D; Bang E; Burgdorf J; Moskal J; Taylor J; Aghajanian G; Duman RS
    Neuropsychopharmacology; 2017 May; 42(6):1231-1242. PubMed ID: 27634355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES; Gerhard D; Thomas A; Duman RS
    Curr Neuropharmacol; 2017; 15(1):11-20. PubMed ID: 26955968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic stimulation of infralimbic PFC reproduces ketamine's rapid and sustained antidepressant actions.
    Fuchikami M; Thomas A; Liu R; Wohleb ES; Land BB; DiLeone RJ; Aghajanian GK; Duman RS
    Proc Natl Acad Sci U S A; 2015 Jun; 112(26):8106-11. PubMed ID: 26056286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine.
    Liu RJ; Fuchikami M; Dwyer JM; Lepack AE; Duman RS; Aghajanian GK
    Neuropsychopharmacology; 2013 Oct; 38(11):2268-77. PubMed ID: 23680942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure.
    Li N; Liu RJ; Dwyer JM; Banasr M; Lee B; Son H; Li XY; Aghajanian G; Duman RS
    Biol Psychiatry; 2011 Apr; 69(8):754-61. PubMed ID: 21292242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice.
    Tang J; Xue W; Xia B; Ren L; Tao W; Chen C; Zhang H; Wu R; Wang Q; Wu H; Duan J; Chen G
    Sci Rep; 2015 Aug; 5():13573. PubMed ID: 26315757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats.
    Soumier A; Carter RM; Schoenfeld TJ; Cameron HA
    eNeuro; 2016; 3(2):. PubMed ID: 27066531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mTOR in depression and antidepressant responses.
    Abelaira HM; Réus GZ; Neotti MV; Quevedo J
    Life Sci; 2014 Apr; 101(1-2):10-4. PubMed ID: 24582593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of neurotrophic and growth factors in the rapid and sustained antidepressant actions of ketamine.
    Deyama S; Kaneda K
    Neuropharmacology; 2023 Feb; 224():109335. PubMed ID: 36403852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2
    Fukumoto K; Fogaça MV; Liu RJ; Duman C; Kato T; Li XY; Duman RS
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):297-302. PubMed ID: 30559184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of ketamine in affective disorders: current evidence of clinical efficacy, limitations of use and pre-clinical evidence on proposed mechanisms of action.
    Naughton M; Clarke G; O'Leary OF; Cryan JF; Dinan TG
    J Affect Disord; 2014 Mar; 156():24-35. PubMed ID: 24388038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.