These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21907273)

  • 1. Microbial processing of tellurium as a tool in biotechnology.
    Turner RJ; Borghese R; Zannoni D
    Biotechnol Adv; 2012; 30(5):954-63. PubMed ID: 21907273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacterial response to the chalcogen metalloids Se and Te.
    Zannoni D; Borsetti F; Harrison JJ; Turner RJ
    Adv Microb Physiol; 2008; 53():1-72. PubMed ID: 17707143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles.
    Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G
    Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions.
    Maltman C; Yurkov V
    Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions.
    Harrison JJ; Ceri H; Stremick C; Turner RJ
    FEMS Microbiol Lett; 2004 Jun; 235(2):357-62. PubMed ID: 15183885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative analysis of tellurite detoxification by members of the genus Shewanella.
    Valdivia-González MA; Díaz-Vásquez WA; Ruiz-León D; Becerra AA; Aguayo DR; Pérez-Donoso JM; Vásquez CC
    Arch Microbiol; 2018 Mar; 200(2):267-273. PubMed ID: 29022087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Se (IV) triggers faster Te (IV) reduction by soil isolates of heterotrophic aerobic bacteria: formation of extracellular SeTe nanospheres.
    Bajaj M; Winter J
    Microb Cell Fact; 2014 Nov; 13():168. PubMed ID: 25425453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tellurium: an element with great biological potency and potential.
    Ba LA; Döring M; Jamier V; Jacob C
    Org Biomol Chem; 2010 Oct; 8(19):4203-16. PubMed ID: 20714663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Te-Assay: a black and white method for environmental sample pre-screening exploiting tellurite reduction.
    Lloyd-Jones G; Williamson WM; Slootweg T
    J Microbiol Methods; 2006 Dec; 67(3):549-56. PubMed ID: 16828185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular biogenic nanomaterials inhibit pyoverdine production in Pseudomonas aeruginosa: a novel insight into impacts of metal(loid)s on environmental bacteria.
    Mohanty A; Liu Y; Yang L; Cao B
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1957-66. PubMed ID: 25273177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprocessing of seleno-oxyanions and tellurite in a novel Bacillus sp. strain STG-83: a solution to removal of toxic oxyanions in presence of nitrate.
    Soudi MR; Ghazvini PT; Khajeh K; Gharavi S
    J Hazard Mater; 2009 Jun; 165(1-3):71-7. PubMed ID: 18977594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications.
    Kruger MC; Bertin PN; Heipieper HJ; Arsène-Ploetze F
    Appl Microbiol Biotechnol; 2013 May; 97(9):3827-41. PubMed ID: 23546422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors.
    Baesman SM; Bullen TD; Dewald J; Zhang D; Curran S; Islam FS; Beveridge TJ; Oremland RS
    Appl Environ Microbiol; 2007 Apr; 73(7):2135-43. PubMed ID: 17277198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of biofilm bioreactors in white biotechnology.
    Muffler K; Lakatos M; Schlegel C; Strieth D; Kuhne S; Ulber R
    Adv Biochem Eng Biotechnol; 2014; 146():123-61. PubMed ID: 24402458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity.
    Vaigankar DC; Dubey SK; Mujawar SY; D'Costa A; S K S
    Ecotoxicol Environ Saf; 2018 Dec; 165():516-526. PubMed ID: 30223164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology-tunable tellurium nanomaterials produced by the tellurite-reducing bacterium Lysinibacillus sp. ZYM-1.
    Wang Z; Bu Y; Zhao Y; Zhang Z; Liu L; Zhou H
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20756-20768. PubMed ID: 29756181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaugmentation for bioremediation: the challenge of strain selection.
    Thompson IP; van der Gast CJ; Ciric L; Singer AC
    Environ Microbiol; 2005 Jul; 7(7):909-15. PubMed ID: 15946288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tellurite: history, oxidative stress, and molecular mechanisms of resistance.
    Chasteen TG; Fuentes DE; Tantaleán JC; Vásquez CC
    FEMS Microbiol Rev; 2009 Jul; 33(4):820-32. PubMed ID: 19368559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological Aspects of Microbial Extracellular Electron Transfer.
    Kato S
    Microbes Environ; 2015; 30(2):133-9. PubMed ID: 26004795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell immobilization for production of lactic acid biofilms do it naturally.
    Dagher SF; Ragout AL; Siñeriz F; Bruno-Bárcena JM
    Adv Appl Microbiol; 2010; 71():113-48. PubMed ID: 20378053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.