BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21907283)

  • 1. PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease.
    Chiang MC; Chern Y; Huang RN
    Neurobiol Dis; 2012 Jan; 45(1):322-8. PubMed ID: 21907283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease.
    Quintanilla RA; Jin YN; Fuenzalida K; Bronfman M; Johnson GVW
    J Biol Chem; 2008 Sep; 283(37):25628-25637. PubMed ID: 18640979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ.
    Li X; Hernandez I; Koyuncu S; Kis B; Häggblad M; Lidemalm L; Abbas AA; Bendegúz S; Göblös A; Brautigam L; Lucas JJ; Carreras-Puigvert J; Hühn D; Pircs K; Vilchez D; Fernandez-Capetillo O
    EBioMedicine; 2024 May; 103():105124. PubMed ID: 38701619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy dysfunction in Huntington's disease: insights from PGC-1α, AMPK, and CKB.
    Ju TC; Lin YS; Chern Y
    Cell Mol Life Sci; 2012 Dec; 69(24):4107-20. PubMed ID: 22627493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of nuclear REST by alternative splicing: a potential therapeutic target for Huntington's disease.
    Chen GL; Ma Q; Goswami D; Shang J; Miller GM
    J Cell Mol Med; 2017 Nov; 21(11):2974-2984. PubMed ID: 28524599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.
    Nadal X; Del Río C; Casano S; Palomares B; Ferreiro-Vera C; Navarrete C; Sánchez-Carnerero C; Cantarero I; Bellido ML; Meyer S; Morello G; Appendino G; Muñoz E
    Br J Pharmacol; 2017 Dec; 174(23):4263-4276. PubMed ID: 28853159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of TFEB in Huntington's Disease.
    Ojalvo-Pacheco J; Yakhine-Diop SMS; Fuentes JM; Paredes-Barquero M; Niso-Santano M
    Biology (Basel); 2024 Apr; 13(4):. PubMed ID: 38666850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant huntingtin fails to directly impair brain mitochondria.
    Hamilton J; Brustovetsky T; Brustovetsky N
    J Neurochem; 2019 Dec; 151(6):716-731. PubMed ID: 31418857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miR-196a provides antioxidative neuroprotection via USP15/Nrf2 regulation in Huntington's disease.
    Chan SC; Tung CW; Lin CW; Tung YS; Wu PM; Cheng PH; Chen CM; Yang SH
    Free Radic Biol Med; 2023 Nov; 209(Pt 2):292-300. PubMed ID: 37907121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amendment of Altered Immune Response by Curcumin in Drosophila Model of Huntington's Disease.
    Dhankhar J; Shrivastava A; Agrawal N
    J Huntingtons Dis; 2023; 12(4):335-354. PubMed ID: 37781812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Metabolic Abnormalities in the Tricarboxylic Acid Cycle in Peripheral Cells From Huntington's Disease Patients.
    Naseri NN; Bonica J; Xu H; Park LC; Arjomand J; Chen Z; Gibson GE
    PLoS One; 2016; 11(9):e0160384. PubMed ID: 27611087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease.
    White A; McGlone A; Gomez-Pastor R
    Biomedicines; 2022 Aug; 10(8):. PubMed ID: 36009526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.
    Dickey AS; Pineda VV; Tsunemi T; Liu PP; Miranda HC; Gilmore-Hall SK; Lomas N; Sampat KR; Buttgereit A; Torres MJ; Flores AL; Arreola M; Arbez N; Akimov SS; Gaasterland T; Lazarowski ER; Ross CA; Yeo GW; Sopher BL; Magnuson GK; Pinkerton AB; Masliah E; La Spada AR
    Nat Med; 2016 Jan; 22(1):37-45. PubMed ID: 26642438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metformin-induced mitochondrial function and ABCD2 up-regulation in X-linked adrenoleukodystrophy involves AMP-activated protein kinase.
    Singh J; Olle B; Suhail H; Felicella MM; Giri S
    J Neurochem; 2016 Jul; 138(1):86-100. PubMed ID: 26849413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Therapeutic Targets and Drug Candidates for Modifying Disease Progression in Adrenoleukodystrophy.
    Pujol A
    Endocr Dev; 2016; 30():147-60. PubMed ID: 26684655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease.
    Jin J; Albertz J; Guo Z; Peng Q; Rudow G; Troncoso JC; Ross CA; Duan W
    J Neurochem; 2013 May; 125(3):410-9. PubMed ID: 23373812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice.
    Forss-Petter S; Werner H; Berger J; Lassmann H; Molzer B; Schwab MH; Bernheimer H; Zimmermann F; Nave KA
    J Neurosci Res; 1997 Dec; 50(5):829-43. PubMed ID: 9418970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial quality control in human health and disease.
    Liu BH; Xu CZ; Liu Y; Lu ZL; Fu TL; Li GR; Deng Y; Luo GQ; Ding S; Li N; Geng Q
    Mil Med Res; 2024 May; 11(1):32. PubMed ID: 38812059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin B
    Pradhan SS; Rao KR; Manjunath M; Saiswaroop R; Patnana DP; Phalguna KS; Choudhary B; Sivaramakrishnan V
    3 Biotech; 2023 Mar; 13(3):96. PubMed ID: 36852176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate.
    Pizcueta P; Vergara C; Emanuele M; Vilalta A; Rodríguez-Pascau L; Martinell M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.