These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 21907390)
1. Extracting dust from soil: Improved efficiency of a previously published process. Ljung K; Siah WS; Devine B; Maley F; Wensinger A; Cook A; Smirk M Sci Total Environ; 2011 Dec; 410-411():269-70. PubMed ID: 21907390 [TBL] [Abstract][Full Text] [Related]
2. Extracting dust from soil: a simple solution to a tricky task. Ljung K; Torin A; Smirk M; Maley F; Cook A; Weinstein P Sci Total Environ; 2008 Dec; 407(1):589-93. PubMed ID: 18845318 [TBL] [Abstract][Full Text] [Related]
3. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
4. Airborne particles in Swansea, UK: their collection and characterization. Price H; Arthur R; Sexton K; Gregory C; Hoogendoorn B; Matthews I; Jones T; BéruBé K J Toxicol Environ Health A; 2010; 73(5):355-67. PubMed ID: 20155578 [TBL] [Abstract][Full Text] [Related]
5. Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Shah MH; Shaheen N J Hazard Mater; 2007 Aug; 147(3):759-67. PubMed ID: 17320287 [TBL] [Abstract][Full Text] [Related]
6. Particulate matter concentration and air quality affected by windblown dust in the Columbia plateau. Sharratt BS; Lauer D J Environ Qual; 2006; 35(6):2011-6. PubMed ID: 17071869 [TBL] [Abstract][Full Text] [Related]
7. Impact of Sahara dust transport on Cape Verde atmospheric element particles. Almeida-Silva M; Almeida SM; Freitas MC; Pio CA; Nunes T; Cardoso J J Toxicol Environ Health A; 2013; 76(4-5):240-51. PubMed ID: 23514066 [TBL] [Abstract][Full Text] [Related]
8. PM10 composition during an intense Saharan dust transport event over Athens (Greece). Remoundaki E; Bourliva A; Kokkalis P; Mamouri RE; Papayannis A; Grigoratos T; Samara C; Tsezos M Sci Total Environ; 2011 Sep; 409(20):4361-72. PubMed ID: 21724238 [TBL] [Abstract][Full Text] [Related]
9. Comparison of wood-dust aerosol size-distributions collected by air samplers. Harper M; Akbar MZ; Andrew ME J Environ Monit; 2004 Jan; 6(1):18-22. PubMed ID: 14737465 [TBL] [Abstract][Full Text] [Related]
10. Characterization of saccharides in size-fractionated ambient particulate matter and aerosol sources: the contribution of primary biological aerosol particles (PBAPs) and soil to ambient particulate matter. Jia Y; Fraser M Environ Sci Technol; 2011 Feb; 45(3):930-6. PubMed ID: 21214236 [TBL] [Abstract][Full Text] [Related]
11. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
12. Characterization of PM(2.5) in the ambient air of Shanghai City by analyzing individual particles. Yue W; Li X; Liu J; Li Y; Yu X; Deng B; Wan T; Zhang G; Huang Y; He W; Hua W; Shao L; Li W; Yang S Sci Total Environ; 2006 Sep; 368(2-3):916-25. PubMed ID: 16782173 [TBL] [Abstract][Full Text] [Related]
13. SEMEDS: an important tool for air pollution bio-monitoring. Ram SS; Majumdar S; Chaudhuri P; Chanda S; Santra SC; Maiti PK; Sudarshan M; Chakraborty A Micron; 2012 Feb; 43(2-3):490-3. PubMed ID: 21813281 [TBL] [Abstract][Full Text] [Related]
14. [Levels of airborne dust by particle size in a suburb of Takamatsu, Japan]. Suna S; Dai H; Fujita Y; Asakawa F; Kitamado T; Hirao T; Fukunaga I; Jitsunari F Nihon Koshu Eisei Zasshi; 2002 Jul; 49(7):706-12. PubMed ID: 12212316 [TBL] [Abstract][Full Text] [Related]
15. An automated and semi-continuous method for the analysis of water-soluble constituents in PM(2.5). Lee BK; Kim YH; Lee DS Sci Total Environ; 2008 Apr; 393(1):145-53. PubMed ID: 18237764 [TBL] [Abstract][Full Text] [Related]
16. Metal concentration of PM(2.5) and PM(10) particles and seasonal variations in urban and rural environment of Agra, India. Kulshrestha A; Satsangi PG; Masih J; Taneja A Sci Total Environ; 2009 Dec; 407(24):6196-204. PubMed ID: 19793609 [TBL] [Abstract][Full Text] [Related]
17. Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Sternberg T; Viles H; Cathersides A; Edwards M Sci Total Environ; 2010 Dec; 409(1):162-8. PubMed ID: 20947134 [TBL] [Abstract][Full Text] [Related]
18. Optical remote sensing to quantify fugitive particulate mass emissions from stationary short-term and mobile continuous sources: part II. Field applications. Du K; Yuen W; Wang W; Rood MJ; Varma RM; Hashmonay RA; Kim BJ; Kemme MR Environ Sci Technol; 2011 Jan; 45(2):666-72. PubMed ID: 21142143 [TBL] [Abstract][Full Text] [Related]
19. Role of Saharan dust in the relationship between particulate matter and short-term daily mortality among the elderly in Madrid (Spain). Jiménez E; Linares C; Martínez D; Díaz J Sci Total Environ; 2010 Nov; 408(23):5729-36. PubMed ID: 20855107 [TBL] [Abstract][Full Text] [Related]
20. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system. Sturman A; Titov M; Zawar-Reza P Sci Total Environ; 2011 Jan; 409(4):810-21. PubMed ID: 21138778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]