These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21907472)

  • 1. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems.
    Hafsteinsdóttir EG; White DA; Gore DB; Stark SC
    Environ Pollut; 2011 Dec; 159(12):3496-503. PubMed ID: 21907472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of freeze-thaw cycling on metal-phosphate formation and stability in single and multi-metal systems.
    Hafsteinsdóttir EG; White DA; Gore DB
    Environ Pollut; 2013 Apr; 175():168-77. PubMed ID: 23428086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and stability of Pb-, Zn- & Cu-PO₄ phases at low temperatures: implications for heavy metal fixation in polar environments.
    White DA; Hafsteinsdóttir EG; Gore DB; Thorogood G; Stark SC
    Environ Pollut; 2012 Feb; 161():143-53. PubMed ID: 22230079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid.
    Scheckel KG; Ryan JA
    Sci Total Environ; 2003 Jan; 302(1-3):253-65. PubMed ID: 12526914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of freeze/thaw cycles on the stability of compounds in DMSO.
    Kozikowski BA; Burt TM; Tirey DA; Williams LE; Kuzmak BR; Stanton DT; Morand KL; Nelson SL
    J Biomol Screen; 2003 Apr; 8(2):210-5. PubMed ID: 12844443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat.
    Sawicka JE; Robador A; Hubert C; Jørgensen BB; Brüchert V
    ISME J; 2010 Apr; 4(4):585-94. PubMed ID: 20033071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Long-Term Repeated Freeze-Thaw Cycles on the Engineering Properties of Compound Solidified/Stabilized Pb-Contaminated Soil: Deterioration Characteristics and Mechanisms.
    Yang Z; Li X; Li D; Wang Y; Liu X
    Int J Environ Res Public Health; 2020 Mar; 17(5):. PubMed ID: 32164256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field assessment of lead immobilization in a contaminated soil after phosphate application.
    Melamed R; Cao X; Chen M; Ma LQ
    Sci Total Environ; 2003 Apr; 305(1-3):117-27. PubMed ID: 12670762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-thaw cycles lead to enhanced colloid-facilitated Pb transport in a Chernozem soil.
    Wang Z; Zhang Y; Flury M; Zou H
    J Contam Hydrol; 2022 Dec; 251():104093. PubMed ID: 36265266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead transformation to pyromorphite by fungi.
    Rhee YJ; Hillier S; Gadd GM
    Curr Biol; 2012 Feb; 22(3):237-41. PubMed ID: 22245002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of freeze-thaw events on the viability of Cryptosporidium parvum oocysts in soil.
    Kato S; Jenkins MB; Fogarty EA; Bowman DD
    J Parasitol; 2002 Aug; 88(4):718-22. PubMed ID: 12197120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of freezing on pH of buffered solutions and consequences for monoclonal antibody aggregation.
    Kolhe P; Amend E; Singh SK
    Biotechnol Prog; 2010; 26(3):727-33. PubMed ID: 20039442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A near-infrared spectroscopic study of the phosphate mineral pyromorphite Pb5(PO4)3Cl.
    Reddy BJ; Frost RL; Palmer SJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):430-5. PubMed ID: 18325831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of freeze/thaw cycles on several biomarkers in urine from patients with kidney disease.
    Zhang Y; Luo Y; Lu H; Wang N; Shen Y; Chen R; Fang P; Yu H; Wang C; Jia W
    Biopreserv Biobank; 2015 Apr; 13(2):144-6. PubMed ID: 25880475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of galena to pyromorphite produces bioavailable sulfur for neutrophilic chemoautotrophy.
    Walczak AB; Kafantaris FA; Druschel GK; Yee N; Young LY
    Geobiology; 2016 Nov; 14(6):599-606. PubMed ID: 27418402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum hepatitis B DNA: stability in relation to multiple freeze-thaw procedures.
    Sanlidag T; Akcali S; Ozbakkaloglu B
    J Virol Methods; 2005 Jan; 123(1):49-52. PubMed ID: 15582698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate Freeze-Thaw Resistance of Magnesium Potassium Phosphate Cement Mortar.
    Yang B; Ji RJ; Lan Q; Yang JM; Xu J
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.