These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 21907472)

  • 41. The effect of rice aging on the freeze-thaw stability of rice flour gels.
    Katekhong W; Charoenrein S
    Carbohydr Polym; 2012 Jul; 89(3):777-82. PubMed ID: 24750861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of a lead-insoluble phase, pyromorphite, by hydroxyapatite during lead migration through the water-unsaturated soils of different lead mobilities.
    Ogawa S; Sato T; Katoh M
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7662-7671. PubMed ID: 29285700
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of phosphate on the transport properties of lead in sand.
    Butkus MA; Johnson MC
    J Hazard Mater; 2011 Jan; 185(1):275-80. PubMed ID: 20934809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improvement of the multiple-stress tolerance of an ethanologenic Saccharomyces cerevisiae strain by freeze-thaw treatment.
    Wei P; Li Z; Lin Y; He P; Jiang N
    Biotechnol Lett; 2007 Oct; 29(10):1501-8. PubMed ID: 17541503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The improved dissolution and prevention of ampoule breakage attained by the introduction of pretreatment into the production process of the lyophilized formulation of recombinant human Interleukin-11 (rhIL-11).
    Hirakura Y; Kojima S; Okada A; Yokohama S; Yokota S
    Int J Pharm; 2004 Nov; 286(1-2):53-67. PubMed ID: 15501002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical assessment of phosphate amendments for stabilization of (Pb+Zn) in polluted soil.
    Raicevic S; Perovic V; Zouboulis AI
    Waste Manag; 2009 May; 29(5):1779-84. PubMed ID: 19138506
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effects of freeze-thaw cycles on aggregate stability of black soil].
    Jin WP; Fan HM; Liu B; Jiang YZ; Jiang Y; Ma RM
    Ying Yong Sheng Tai Xue Bao; 2019 Dec; 30(12):4195-4201. PubMed ID: 31840465
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of effect of repeated freeze and thaw cycles on stability of genomic DNA using pulsed field gel electrophoresis.
    Shao W; Khin S; Kopp WC
    Biopreserv Biobank; 2012 Feb; 10(1):4-11. PubMed ID: 24849748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study on the geometry characteristics of soil primary mineral particles under cryogenic action.
    Zhai J; Zhang S; Zhang Z; Melnikov A; Li H
    Sci Rep; 2022 Oct; 12(1):16766. PubMed ID: 36202904
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effects of heat and freeze-thaw cycling on naloxone stability.
    Lai D; Pham AT; Nekkar Rao PP; Beazely MA
    Harm Reduct J; 2019 Feb; 16(1):17. PubMed ID: 30813917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw.
    Qin L; Zhai C; Liu S; Xu J
    Sci Rep; 2017 Jun; 7(1):3675. PubMed ID: 28623329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. X-ray absorption near edge structure study of lead sorption on phosphate-treated kaolinite.
    Taylor RW; Bleam WF; Ranatunga TD; Schulthess CP; Senwo ZN; Ranatunga DR
    Environ Sci Technol; 2009 Feb; 43(3):711-7. PubMed ID: 19245006
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Trypsin activity and freeze-thaw stability in the presence of ions and non-ionic surfactants.
    Vatić S; Mirković N; Milošević JR; Jovčić B; Polović NĐ
    J Biosci Bioeng; 2021 Mar; 131(3):234-240. PubMed ID: 33189544
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accelerated stability studies of abatacept formulations: comparison of freeze-thawing- and agitation-induced stresses.
    Cordes AA; Carpenter JF; Randolph TW
    J Pharm Sci; 2012 Jul; 101(7):2307-15. PubMed ID: 22488299
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature Based Process Characterization of Pharmaceutical Freeze-Thaw Operations.
    Weber D; Hubbuch J
    Front Bioeng Biotechnol; 2021; 9():617770. PubMed ID: 33898399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Testosterone and Cortisol Salivary Samples Are Stable Across Multiple Freeze-Thaw Cycles.
    Sontag SA; Cabarkapa D; Fry AC
    J Strength Cond Res; 2023 Apr; 37(4):915-918. PubMed ID: 36730584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of Freeze Thaw Cycles on stored plasma in the Biobank of the Norwegian Mother and Child Cohort Study.
    Paltiel L; Rønningen KS; Meltzer HM; Baker SV; Hoppin JA
    Cell Preserv Technol; 2008 Sep; 6(3):223-230. PubMed ID: 20428472
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pyromorphite growth on lead-sulfide surfaces.
    Stack AG; Erni R; Browning ND; Casey WH
    Environ Sci Technol; 2004 Nov; 38(21):5529-34. PubMed ID: 15575268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite.
    Scheckel KG; Ryan JA
    Environ Sci Technol; 2002 May; 36(10):2198-204. PubMed ID: 12038830
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fungal transformation of metallic lead to pyromorphite in liquid medium.
    Rhee YJ; Hillier S; Pendlowski H; Gadd GM
    Chemosphere; 2014 Oct; 113():17-21. PubMed ID: 25065784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.