These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21907479)

  • 1. Eye movement suppression interferes with construction of object-centered spatial reference frames in working memory.
    Wallentin M; Kristensen LB; Olsen JH; Nielsen AH
    Brain Cogn; 2011 Dec; 77(3):432-7. PubMed ID: 21907479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frontal eye fields involved in shifting frame of reference within working memory for scenes.
    Wallentin M; Roepstorff A; Burgess N
    Neuropsychologia; 2008 Jan; 46(2):399-408. PubMed ID: 17915262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locations of serial reach targets are coded in multiple reference frames.
    Thompson AA; Henriques DY
    Vision Res; 2010 Dec; 50(24):2651-60. PubMed ID: 20850469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the effect of verbal working memory load on visuo-spatial exogenous orienting.
    Santangelo V; Spence C
    Neurosci Lett; 2007 Feb; 413(2):105-9. PubMed ID: 17174028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. As the world turns: short-term human spatial memory in egocentric and allocentric coordinates.
    Banta Lavenex P; Lecci S; Prêtre V; Brandner C; Mazza C; Pasquier J; Lavenex P
    Behav Brain Res; 2011 May; 219(1):132-41. PubMed ID: 21237209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ; Raemaekers M; van Wezel RJ; Oleksiak A; Postma A
    Brain Res; 2009 Nov; 1297():70-9. PubMed ID: 19651111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased neural efficiency with repeated performance of a working memory task is information-type dependent.
    Sayala S; Sala JB; Courtney SM
    Cereb Cortex; 2006 May; 16(5):609-17. PubMed ID: 16079245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the brain's frontal eye fields in constructing frame of reference.
    Wallentin M
    Cogn Process; 2012 Aug; 13 Suppl 1():S359-63. PubMed ID: 22806655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object-based neglect varies with egocentric position.
    Karnath HO; Mandler A; Clavagnier S
    J Cogn Neurosci; 2011 Oct; 23(10):2983-93. PubMed ID: 21391769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The egocentric spatial reference frame used in dorsal-lateral prefrontal working memory in primates.
    Ma Y; Hu X; Wilson FA
    Neurosci Biobehav Rev; 2012 Jan; 36(1):26-33. PubMed ID: 21447357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans.
    Feigenbaum JD; Morris RG
    Neuropsychology; 2004 Jul; 18(3):462-72. PubMed ID: 15291724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Associative knowledge controls deployment of visual selective attention.
    Moores E; Laiti L; Chelazzi L
    Nat Neurosci; 2003 Feb; 6(2):182-9. PubMed ID: 12514738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visuospatial working memory and changes of the point of view in 3D space.
    Schmidt D; Krause BJ; Weiss PH; Fink GR; Shah NJ; Amorim MA; Müller HW; Berthoz A
    Neuroimage; 2007 Jul; 36(3):955-68. PubMed ID: 17493835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaired spatial working memory maintenance in schizophrenia involves both spatial coordinates and spatial reference frames.
    Mazhari S; Badcock JC; Waters FA; Dragović M; Badcock DR; Jablensky A
    Psychiatry Res; 2010 Oct; 179(3):253-8. PubMed ID: 20493553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Updating visual memory across eye movements for ocular and arm motor control.
    Thompson AA; Henriques DY
    J Neurophysiol; 2008 Nov; 100(5):2507-14. PubMed ID: 18768640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reference frames for reach planning in macaque dorsal premotor cortex.
    Batista AP; Santhanam G; Yu BM; Ryu SI; Afshar A; Shenoy KV
    J Neurophysiol; 2007 Aug; 98(2):966-83. PubMed ID: 17581846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imagery of a moving object: the role of occipital cortex and human MT/V5+.
    Kaas A; Weigelt S; Roebroeck A; Kohler A; Muckli L
    Neuroimage; 2010 Jan; 49(1):794-804. PubMed ID: 19646536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for mapping response fields and determining intrinsic reference frames of single-unit activity: applied to 3D head-unrestrained gaze shifts.
    Keith GP; DeSouza JF; Yan X; Wang H; Crawford JD
    J Neurosci Methods; 2009 May; 180(1):171-84. PubMed ID: 19427544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.