These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 21907519)

  • 1. Are brain currents detectable by means of low-field NMR? A phantom study.
    Höfner N; Albrecht HH; Cassará AM; Curio G; Hartwig S; Haueisen J; Hilschenz I; Körber R; Martens S; Scheer HJ; Voigt J; Trahms L; Burghoff M
    Magn Reson Imaging; 2011 Dec; 29(10):1365-73. PubMed ID: 21907519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal current detection with low-field magnetic resonance: simulations and methods.
    Cassará AM; Maraviglia B; Hartwig S; Trahms L; Burghoff M
    Magn Reson Imaging; 2009 Oct; 27(8):1131-9. PubMed ID: 19269766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous measurements of somatosensory evoked AC and near-DC MEG signals.
    Körber R; Curio G; Hartwig S; Hilschenz I; Höfner N; Scheer HJ; Trahms L; Voigt J; Burghoff M
    Biomed Tech (Berl); 2011 Apr; 56(2):91-7. PubMed ID: 21446889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional magnetic resonance imaging reference phantom.
    Renvall V
    Magn Reson Imaging; 2009 Jun; 27(5):701-8. PubMed ID: 19152772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward direct neural current imaging by resonant mechanisms at ultra-low field.
    Kraus RH; Volegov P; Matlachov A; Espy M
    Neuroimage; 2008 Jan; 39(1):310-7. PubMed ID: 17920296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of auditory and somatically evoked magnetic fields and localization of their dipole sources.
    Kuriki S; Isobe Y; Mizutani Y
    Front Med Biol Eng; 1989; 1(2):107-18. PubMed ID: 2486751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo 17O NMR approaches for brain study at high field.
    Zhu XH; Zhang N; Zhang Y; Zhang X; Ugurbil K; Chen W
    NMR Biomed; 2005 Apr; 18(2):83-103. PubMed ID: 15770611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: a model for direct detection of neuronal currents in the brain.
    Konn D; Gowland P; Bowtell R
    Magn Reson Med; 2003 Jul; 50(1):40-9. PubMed ID: 12815677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneously detected biomagnetic signals and NMR.
    Espy MA; Volegov PL; Matlachov AN; George JS; Kraus RH
    Neurol Clin Neurophysiol; 2004 Nov; 2004():12. PubMed ID: 16012616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus-induced Rotary Saturation (SIRS): a potential method for the detection of neuronal currents with MRI.
    Witzel T; Lin FH; Rosen BR; Wald LL
    Neuroimage; 2008 Oct; 42(4):1357-65. PubMed ID: 18684643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI.
    Cassarà AM; Hagberg GE; Bianciardi M; Migliore M; Maraviglia B
    Neuroimage; 2008 Jan; 39(1):87-106. PubMed ID: 17936018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lorentz effect imaging of ionic currents in solution.
    Truong TK; Avram A; Song AW
    J Magn Reson; 2008 Mar; 191(1):93-9. PubMed ID: 18180187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brush stimulator for functional brain imaging.
    Jousmäki V; Nishitani N; Hari R
    Clin Neurophysiol; 2007 Dec; 118(12):2620-4. PubMed ID: 17950032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields.
    Volegov P; Matlachov AN; Espy MA; George JS; Kraus RH
    Magn Reson Med; 2004 Sep; 52(3):467-70. PubMed ID: 15334563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of spatial BOLD sensitivity variations in fMRI using gradient-echo field maps.
    Mannfolk P; Wirestam R; Nilsson M; van Westen D; Ståhlberg F; Olsrud J
    Magn Reson Imaging; 2010 Sep; 28(7):947-56. PubMed ID: 20573463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mouse model for studying large-scale neuronal networks using EEG mapping techniques.
    Mégevand P; Quairiaux C; Lascano AM; Kiss JZ; Michel CM
    Neuroimage; 2008 Aug; 42(2):591-602. PubMed ID: 18585931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding eddy-current problems in ultra-low-field MRI with self-shielded polarizing coils.
    Nieminen JO; Vesanen PT; Zevenhoven KC; Dabek J; Hassel J; Luomahaara J; Penttilä JS; Ilmoniemi RJ
    J Magn Reson; 2011 Sep; 212(1):154-60. PubMed ID: 21784681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid three-dimensional functional magnetic resonance imaging of the initial negative BOLD response.
    Lindquist MA; Zhang CH; Glover G; Shepp L
    J Magn Reson; 2008 Mar; 191(1):100-11. PubMed ID: 18207441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor.
    Pell GS; Abbott DF; Fleming SW; Prichard JW; Jackson GD
    Magn Reson Med; 2006 May; 55(5):1038-46. PubMed ID: 16602069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.