These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21907763)

  • 1. Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive.
    Alamilla J; Gillespie DC
    Neuroscience; 2011 Nov; 196():285-96. PubMed ID: 21907763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre- and postsynaptic properties of glutamatergic transmission in the immature inhibitory MNTB-LSO pathway.
    Case DT; Gillespie DC
    J Neurophysiol; 2011 Nov; 106(5):2570-9. PubMed ID: 21832038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory synapses in the developing auditory system are glutamatergic.
    Gillespie DC; Kim G; Kandler K
    Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional glutamatergic and glycinergic inputs to several superior olivary nuclei of the rat revealed by optical imaging.
    Srinivasan G; Friauf E; Löhrke S
    Neuroscience; 2004; 128(3):617-34. PubMed ID: 15381290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional refinement in the projection from ventral cochlear nucleus to lateral superior olive precedes hearing onset in rat.
    Case DT; Zhao X; Gillespie DC
    PLoS One; 2011; 6(6):e20756. PubMed ID: 21694776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons.
    Fitzsimonds RM; Dichter MA
    J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate receptors underlying excitatory synaptic transmission in the rat's lateral superior olive studied in vitro.
    Wu SH; Fu XW
    Hear Res; 1998 Aug; 122(1-2):47-59. PubMed ID: 9714574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptotagmins I and II in the developing rat auditory brainstem: Synaptotagmin I is transiently expressed in glutamate-releasing immature inhibitory terminals.
    Cooper AP; Gillespie DC
    J Comp Neurol; 2011 Aug; 519(12):2417-33. PubMed ID: 21456023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors.
    Mameli M; Carta M; Partridge LD; Valenzuela CF
    J Neurosci; 2005 Mar; 25(9):2285-94. PubMed ID: 15745954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive.
    Smith AJ; Owens S; Forsythe ID
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):681-98. PubMed ID: 11118498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of glutamatergic synaptic input to supraoptic neurons by presynaptic nicotinic receptors.
    Li DP; Pan HL
    Am J Physiol Regul Integr Comp Physiol; 2001 Oct; 281(4):R1105-13. PubMed ID: 11557616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of metabotropic glutamate receptor-mediated heterosynaptic inhibition of developing MNTB-LSO inhibitory synapses.
    Nishimaki T; Jang IS; Ishibashi H; Yamaguchi J; Nabekura J
    Eur J Neurosci; 2007 Jul; 26(2):323-30. PubMed ID: 17623021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depression of retinogeniculate synaptic transmission by presynaptic D(2)-like dopamine receptors in rat lateral geniculate nucleus.
    Govindaiah G; Cox CL
    Eur J Neurosci; 2006 Jan; 23(2):423-34. PubMed ID: 16420449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitatory and inhibitory postsynaptic currents of the superior salivatory nucleus innervating the salivary glands and tongue in the rat.
    Mitoh Y; Funahashi M; Kobashi M; Matsuo R
    Brain Res; 2004 Feb; 999(1):62-72. PubMed ID: 14746922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycinergic and GABAergic calcium responses in the developing lateral superior olive.
    Kullmann PH; Ene FA; Kandler K
    Eur J Neurosci; 2002 Apr; 15(7):1093-104. PubMed ID: 11982621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways.
    Jiang MC; Alheid GF; Nunzi MG; Houk JC;
    Neuroscience; 2002; 110(1):105-21. PubMed ID: 11882376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic NR2B-containing NMDA autoreceptors mediate gluta-matergic synaptic transmission in the rat visual cortex.
    Li YH; Wang J; Zhang G
    Curr Neurovasc Res; 2009 May; 6(2):104-9. PubMed ID: 19442159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation of glutamatergic transmission in the vestibulo-olivary pathway impacts on the registration of head rotational signals in the brainstem of rats.
    Lai CH; Ma CW; Lai SK; Han L; Wong HM; Yeung KW; Shum DK; Chan YS
    Brain Struct Funct; 2016 Jan; 221(1):217-38. PubMed ID: 25304399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic GABA(B) receptors inhibit synaptic inputs to rat subthalamic neurons.
    Shen KZ; Johnson SW
    Neuroscience; 2001; 108(3):431-6. PubMed ID: 11738257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine binding sites of presynaptic NMDA receptors may tonically regulate glutamate release in the rat visual cortex.
    Li YH; Han TZ
    J Neurophysiol; 2007 Jan; 97(1):817-23. PubMed ID: 17093111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.