BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 2190806)

  • 1. Signal transduction mechanisms involved in hormonal Ca2+ fluxes.
    Williamson JR; Monck JR
    Environ Health Perspect; 1990 Mar; 84():121-36. PubMed ID: 2190806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormone effects on cellular Ca2+ fluxes.
    Williamson JR; Monck JR
    Annu Rev Physiol; 1989; 51():107-24. PubMed ID: 2496641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms involved in receptor-mediated changes of intracellular Ca2+ in liver.
    Williamson JR; Hansen CA; Verhoeven A; Coll KE; Johanson R; Williamson MT; Filburn C
    Soc Gen Physiol Ser; 1987; 42():93-116. PubMed ID: 2850613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates.
    Catt KJ; Balla T; Baukal AJ; Hausdorff WP; Aguilera G
    Clin Exp Pharmacol Physiol; 1988 Jul; 15(7):501-15. PubMed ID: 3152162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of phosphoinositide metabolism in signal transduction in secretory cells.
    Putney JW
    J Exp Biol; 1988 Sep; 139():135-50. PubMed ID: 2850334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor-mediated signalling pathways acting through hydrolysis of membrane phospholipids in cardiomyocytes.
    Lamers JM; De Jonge HW; Panagia V; Van Heugten HA
    Cardioscience; 1993 Sep; 4(3):121-31. PubMed ID: 8400019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of inositol phospholipid and inositol phosphate metabolism in chemoattractant-activated human polymorphonuclear leukocytes.
    Dillon SB; Murray JJ; Uhing RJ; Snyderman R
    J Cell Biochem; 1987 Dec; 35(4):345-59. PubMed ID: 3126197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of phosphoinositide metabolism in Ca2+ signalling of skeletal muscle cells.
    Foster PS
    Int J Biochem; 1994 Apr; 26(4):449-68. PubMed ID: 8013729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms involved in calcium-mobilizing agonist responses.
    Exton JH
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1986; 20():211-62. PubMed ID: 3028085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle.
    Murthy KS; Makhlouf GM
    Mol Pharmacol; 1996 Oct; 50(4):870-7. PubMed ID: 8863832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous desensitization of both phosphoinositide and Ca2+ signaling in SH-SY5Y neuroblastoma cells: a role for intracellular Ca2+ store depletion?
    Willars GB; Nahorski SR
    Mol Pharmacol; 1995 Mar; 47(3):509-16. PubMed ID: 7700249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal transduction pathways associated with alpha1-adrenoceptor subtypes in cells and tissues including human prostate.
    Marshall I; Burt RP; Chapple CR
    Eur Urol; 1999; 36 Suppl 1():42-7; discussion 65. PubMed ID: 10393472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback activation of phospholipase C via intracellular mobilization and store-operated influx of Ca2+ in insulin-secreting beta-cells.
    Thore S; Dyachok O; Gylfe E; Tengholm A
    J Cell Sci; 2005 Oct; 118(Pt 19):4463-71. PubMed ID: 16159958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross talk between P2Y2 nucleotide receptors and CXC chemokine receptor 2 resulting in enhanced Ca2+ signaling involves enhancement of phospholipase C activity and is enabled by incremental Ca2+ release in human embryonic kidney cells.
    Werry TD; Wilkinson GF; Willars GB
    J Pharmacol Exp Ther; 2003 Nov; 307(2):661-9. PubMed ID: 12975484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol-1,3,4,5-tetrakisphosphate induces calcium mobilization via the inositol-1,4,5-trisphosphate receptor in SH-SY5Y neuroblastoma cells.
    Wilcox RA; Challiss RA; Liu C; Potter BV; Nahorski SR
    Mol Pharmacol; 1993 Oct; 44(4):810-7. PubMed ID: 8232232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific.
    Perez DM; DeYoung MB; Graham RM
    Mol Pharmacol; 1993 Oct; 44(4):784-95. PubMed ID: 8232229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes.
    Gregory RB; Wilcox RA; Berven LA; van Straten NC; van der Marel GA; van Boom JH; Barritt GJ
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):401-8. PubMed ID: 10393099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing PIP2 hydrolysis, Ins(1,4,5)P3 receptor availability, or calcium gradients inhibits progesterone-stimulated Xenopus oocyte maturation.
    Han JK; Lee SK
    Biochem Biophys Res Commun; 1995 Dec; 217(3):931-9. PubMed ID: 8554618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inositol phosphate formation and its relationship to calcium signaling.
    Hughes AR; Putney JW
    Environ Health Perspect; 1990 Mar; 84():141-7. PubMed ID: 2190808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase.
    Albert JL; Boyle JP; Roberts JA; Challiss RA; Gubby SE; Boarder MR
    Br J Pharmacol; 1997 Nov; 122(5):935-41. PubMed ID: 9384512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.