BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21908634)

  • 41. Natural Polyhydroxyalkanoates-An Overview of Bacterial Production Methods.
    Fukala I; Kučera I
    Molecules; 2024 May; 29(10):. PubMed ID: 38792154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversity and ecological assembly process of aerobic anoxygenic phototrophic bacteria in a low irradiation area, Three Gorges Reservoir.
    Huo L; Ma A; Liu H; Wang X; Song C
    J Environ Sci (China); 2024 Sep; 143():116-125. PubMed ID: 38644009
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon dioxide sequestration by chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate.
    Kumar M; Gupta A; Thakur IS
    Bioresour Technol; 2016 Aug; 213():249-256. PubMed ID: 26920627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Draft Genome Sequences of Two Marine Phototrophic Bacteria, Erythrobacter longus Strain DSM 6997 and Erythrobacter litoralis Strain DSM 8509.
    Wang Y; Zhang R; Zheng Q; Jiao N
    Genome Announc; 2014 Jul; 2(4):. PubMed ID: 25059862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A laboratory case study of efficient polyhydoxyalkonates production by Bacillus cereus, a contaminant in Saccharophagus degradans ATCC 43961 in minimal sea salt media.
    Sawant SS; Salunke BK; Kim BS
    Curr Microbiol; 2014 Dec; 69(6):832-8. PubMed ID: 25085545
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria.
    Higuchi-Takeuchi M; Morisaki K; Toyooka K; Numata K
    PLoS One; 2016; 11(8):e0160981. PubMed ID: 27513570
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source.
    Munir S; Jamil N
    J Basic Microbiol; 2018 Mar; 58(3):247-254. PubMed ID: 29314110
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Use of a mannitol rich ensiled grass press juice (EGPJ) as a sole carbon source for polyhydroxyalkanoates (PHAs) production through high cell density cultivation.
    Cerrone F; Davis R; Kenny ST; Woods T; O'Donovan A; Gupta VK; Tuohy M; Babu RP; O'Kiely P; O'Connor K
    Bioresour Technol; 2015 Sep; 191():45-52. PubMed ID: 25978856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacteriochlorophyll and community structure of aerobic anoxygenic phototrophic bacteria in a particle-rich estuary.
    Cottrell MT; Ras J; Kirchman DL
    ISME J; 2010 Jul; 4(7):945-54. PubMed ID: 20182527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic modelling of polyhydroxyalkanoate copolymers production by mixed microbial cultures.
    Dias JM; Oehmen A; Serafim LS; Lemos PC; Reis MA; Oliveira R
    BMC Syst Biol; 2008 Jul; 2():59. PubMed ID: 18611259
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polymer production by bacterial strains isolated from activated sludge treating municipal wastewater.
    Yan S; Subramanian SB; Tyagi RD; Surampalli RY
    Water Sci Technol; 2008; 57(4):533-9. PubMed ID: 18359992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2.
    Song JH; Jeon CO; Choi MH; Yoon SC; Park W
    J Microbiol Biotechnol; 2008 Aug; 18(8):1408-15. PubMed ID: 18756101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study.
    Li Q; Song A; Peng W; Jin Z; Müller WEG; Wang X
    FEMS Microbiol Ecol; 2017 Jun; 93(6):. PubMed ID: 28498940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Picoplankton Bloom in Global South? A High Fraction of Aerobic Anoxygenic Phototrophic Bacteria in Metagenomes from a Coastal Bay (Arraial do Cabo--Brazil).
    Cuadrat RR; Ferrera I; Grossart HP; Dávila AM
    OMICS; 2016 Feb; 20(2):76-87. PubMed ID: 26871866
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida.
    Escapa IF; García JL; Bühler B; Blank LM; Prieto MA
    Environ Microbiol; 2012 Apr; 14(4):1049-63. PubMed ID: 22225632
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Flourishing deep-sea AAP bacteria detected by flow cytometric sorting and molecular analysis.
    Qiu D; Huang L; Liu X; Lin S
    PLoS One; 2019; 14(6):e0218753. PubMed ID: 31216335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyhydroxyalkanoate recovery from newly screened Bacillus sp. LPPI-18 using various methods of extraction from Loktak Lake sediment sample.
    Mohammed S; Ray L
    J Genet Eng Biotechnol; 2022 Aug; 20(1):115. PubMed ID: 35932435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae.
    Fradinho JC; Domingos JM; Carvalho G; Oehmen A; Reis MA
    Bioresour Technol; 2013 Mar; 132():146-53. PubMed ID: 23399498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509.
    Shahid S; Mosrati R; Ledauphin J; Amiel C; Fontaine P; Gaillard JL; Corroler D
    J Biosci Bioeng; 2013 Sep; 116(3):302-8. PubMed ID: 23548274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Spatial and Temporal Succession Characteristics of Aerobic Anoxygenic Photosynthesis Bacteria in a Stratified Reservoir].
    Zhang HH; Wang Y; Huang TL; Wang CX; Lu LC; Si F; Li N; Liu KW; Yan MM; Miao YT
    Huan Jing Ke Xue; 2020 May; 41(5):2188-2197. PubMed ID: 32608836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.