BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21908634)

  • 61. Acetate-Inducing Metabolic States Enhance Polyhydroxyalkanoate Production in Marine Purple Non-sulfur Bacteria Under Aerobic Conditions.
    Higuchi-Takeuchi M; Numata K
    Front Bioeng Biotechnol; 2019; 7():118. PubMed ID: 31192201
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Biosynthesis of polyhydroxyalkanoate by Gamma proteobacterium WD-3 from volatile fatty acids.
    Chen Z; Li Y; Wen Q; Zhang H
    Chemosphere; 2011 Feb; 82(8):1209-13. PubMed ID: 21129764
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre.
    Cottrell MT; Mannino A; Kirchman DL
    Appl Environ Microbiol; 2006 Jan; 72(1):557-64. PubMed ID: 16391092
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Valorization of food waste derived anaerobic digestate into polyhydroxyalkanoate (PHA) using Thauera mechernichensis TL1.
    Raunhan R; Jantharadej K; Mhuantong W; Chanprateep Napathorn S; Boonchayaanant Suwannasilp B
    Waste Manag; 2023 Sep; 171():248-258. PubMed ID: 37678073
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogen-accumulating organisms.
    Jiang Y; Chen Y
    Environ Technol; 2009 Mar; 30(3):241-9. PubMed ID: 19438056
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Genome sequence of Citromicrobium strain JLT1363, isolated from the South China Sea.
    Zheng Q; Zhang R; Jiao N
    J Bacteriol; 2011 Apr; 193(8):2074-5. PubMed ID: 21317332
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements.
    Soora M; Tomasch J; Wang H; Michael V; Petersen J; Engelen B; Wagner-Döbler I; Cypionka H
    Front Microbiol; 2015; 6():233. PubMed ID: 25859246
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels.
    Mukkata K; Kantachote D; Wittayaweerasak B; Techkarnjanaruk S; Boonapatcharoen N
    Saudi J Biol Sci; 2016 Jul; 23(4):478-87. PubMed ID: 27298580
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vivo and in vitro observations of polyhydroxybutyrate granules formed by Dinoroseobacter sp. JL 1447.
    Xiao N; Jiao N; Liu Y
    Int J Biol Macromol; 2015 Mar; 74():467-75. PubMed ID: 25498348
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Polyhydroxyalkanoate involvement in stress-survival of two psychrophilic bacterial strains from the High Arctic.
    Grzesiak J; Rogala MM; Gawor J; Kouřilová X; Obruča S
    Appl Microbiol Biotechnol; 2024 Mar; 108(1):273. PubMed ID: 38520566
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Polyhydroxyalkanoate production potential of heterotrophic bacteria in activated sludge.
    Inoue D; Suzuki Y; Uchida T; Morohoshi J; Sei K
    J Biosci Bioeng; 2016 Jan; 121(1):47-51. PubMed ID: 26071670
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Polyhydroxyalkanoate biosynthesis and optimisation of thermophilic Geobacillus stearothermophilus strain K4E3_SPR_NPP.
    Rodge SP; Shende KS; Patil NP
    Extremophiles; 2023 Jun; 27(2):13. PubMed ID: 37349574
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes.
    Tomasch J; Gohl R; Bunk B; Diez MS; Wagner-Döbler I
    ISME J; 2011 Dec; 5(12):1957-68. PubMed ID: 21654848
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy.
    Shamala TR; Divyashree MS; Davis R; Kumari KS; Vijayendra SV; Raj B
    Indian J Microbiol; 2009 Sep; 49(3):251-8. PubMed ID: 23100778
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of nitrogen limitation on enrichment of activated sludge for PHA production.
    Basak B; Ince O; Artan N; Yagci N; Ince BK
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):1007-16. PubMed ID: 21643976
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.
    Sakai K; Miyake S; Iwama K; Inoue D; Soda S; Ike M
    J Appl Microbiol; 2015 Jan; 118(1):255-66. PubMed ID: 25362861
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Two-Stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using
    Chang YC; Reddy MV; Imura K; Onodera R; Kamada N; Sano Y
    Bioengineering (Basel); 2021 Oct; 8(11):. PubMed ID: 34821723
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow.
    Grzesiak J; Gawor J; Rogala MM; Kouřilová X; Obruča S
    Extremophiles; 2023 Sep; 27(3):25. PubMed ID: 37709928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes.
    Yutin N; Suzuki MT; Teeling H; Weber M; Venter JC; Rusch DB; Béjà O
    Environ Microbiol; 2007 Jun; 9(6):1464-75. PubMed ID: 17504484
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biosynthesis of polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions.
    Numata K; Doi Y
    Mar Biotechnol (NY); 2012 Jun; 14(3):323-31. PubMed ID: 22068389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.