BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21908634)

  • 81. Polyhydroxyalkanoate nanoparticles produced by marine bacteria cultivated on cost effective Mediterranean algal hydrolysate media.
    El-Malek FA; Rofeal M; Farag A; Omar S; Khairy H
    J Biotechnol; 2021 Feb; 328():95-105. PubMed ID: 33485864
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Roseibacterium beibuensis sp. nov., a novel member of roseobacter clade isolated from Beibu Gulf in the South China Sea.
    Mao Y; Wei J; Zheng Q; Xiao N; Li Q; Fu Y; Wang Y; Jiao N
    Curr Microbiol; 2012 Nov; 65(5):568-74. PubMed ID: 22847226
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids.
    Andreolli M; Scerbacov V; Frison N; Zaccone C; Lampis S
    N Biotechnol; 2022 Dec; 72():71-79. PubMed ID: 36191843
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India.
    Shrivastav A; Mishra SK; Mishra S
    Int J Biol Macromol; 2010 Mar; 46(2):255-60. PubMed ID: 20060853
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A Comparison of 14 Erythrobacter Genomes Provides Insights into the Genomic Divergence and Scattered Distribution of Phototrophs.
    Zheng Q; Lin W; Liu Y; Chen C; Jiao N
    Front Microbiol; 2016; 7():984. PubMed ID: 27446024
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Light enhances survival of Dinoroseobacter shibae during long-term starvation.
    Soora M; Cypionka H
    PLoS One; 2013; 8(12):e83960. PubMed ID: 24386315
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct.
    Shrivastav A; Mishra SK; Shethia B; Pancha I; Jain D; Mishra S
    Int J Biol Macromol; 2010 Aug; 47(2):283-7. PubMed ID: 20417229
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Production of Biohydrogen and/or Poly-β-hydroxybutyrate by Rhodopseudomonas sp. Using Various Carbon Sources as Substrate.
    Touloupakis E; Poloniataki EG; Ghanotakis DF; Carlozzi P
    Appl Biochem Biotechnol; 2021 Jan; 193(1):307-318. PubMed ID: 32954484
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Burkholderia xenovorans LB400 possesses a functional polyhydroxyalkanoate anabolic pathway encoded by the pha genes and synthesizes poly(3-hydroxybutyrate) under nitrogen-limiting conditions.
    Urtuvia V; Villegas P; Fuentes S; González M; Seeger M
    Int Microbiol; 2018 Jun; 21(1-2):47-57. PubMed ID: 30810921
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Production and characterization of polyhydroxyalkanoates in Pseudomonas aeruginosa ATCC 9027 from glucose, an unrelated carbon source.
    Rojas-Rosas O; Villafaña-Rojas J; López-Dellamary FA; Nungaray-Arellano J; González-Reynoso O
    Can J Microbiol; 2007 Jul; 53(7):840-51. PubMed ID: 17898839
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Potential for primary productivity in a globally-distributed bacterial phototroph.
    Graham ED; Heidelberg JF; Tully BJ
    ISME J; 2018 Jun; 12(7):1861-1866. PubMed ID: 29523891
    [TBL] [Abstract][Full Text] [Related]  

  • 92. RNA-Seq analysis provides insights for understanding photoautotrophic polyhydroxyalkanoate production in recombinant Synechocystis Sp.
    Lau NS; Foong CP; Kurihara Y; Sudesh K; Matsui M
    PLoS One; 2014; 9(1):e86368. PubMed ID: 24466058
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace.
    Waller JL; Green PG; Loge FJ
    Bioresour Technol; 2012 Sep; 120():285-9. PubMed ID: 22784593
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.
    Cheng J; Charles TC
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7611-27. PubMed ID: 27333909
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria.
    Kaschner M; Loeschcke A; Krause J; Minh BQ; Heck A; Endres S; Svensson V; Wirtz A; von Haeseler A; Jaeger KE; Drepper T; Krauss U
    Mol Microbiol; 2014 Sep; 93(5):1066-78. PubMed ID: 25039543
    [TBL] [Abstract][Full Text] [Related]  

  • 96. [Polyhydroxyalkanoate (PHA) synthesis by activated sludge microbes using acetic acid as carbon source].
    Li W; Chen YG
    Huan Jing Ke Xue; 2009 Aug; 30(8):2366-70. PubMed ID: 19799302
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source.
    López-Cuellar MR; Alba-Flores J; Rodríguez JN; Pérez-Guevara F
    Int J Biol Macromol; 2011 Jan; 48(1):74-80. PubMed ID: 20933541
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genotypic and Phenotypic Detection of Polyhydroxyalkanoate Production in Bacterial Isolates from Food.
    Máčalová D; Janalíková M; Sedlaříková J; Rektoříková I; Koutný M; Pleva P
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674766
    [TBL] [Abstract][Full Text] [Related]  

  • 99. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery.
    George DM; Vincent AS; Mackey HR
    Biotechnol Rep (Amst); 2020 Dec; 28():e00563. PubMed ID: 33304839
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Study of the Production of Poly(Hydroxybutyrate-
    Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B
    Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.