BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 21908688)

  • 1. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
    Narsai R; Law SR; Carrie C; Xu L; Whelan J
    Plant Physiol; 2011 Nov; 157(3):1342-62. PubMed ID: 21908688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide and RNA metabolism prime translational initiation in the earliest events of mitochondrial biogenesis during Arabidopsis germination.
    Law SR; Narsai R; Taylor NL; Delannoy E; Carrie C; Giraud E; Millar AH; Small I; Whelan J
    Plant Physiol; 2012 Apr; 158(4):1610-27. PubMed ID: 22345507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5' to 3' mRNA Decay Contributes to the Regulation of Arabidopsis Seed Germination by Dormancy.
    Basbouss-Serhal I; Pateyron S; Cochet F; Leymarie J; Bailly C
    Plant Physiol; 2017 Mar; 173(3):1709-1723. PubMed ID: 28126845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A nuclear gene for the iron-sulfur subunit of mitochondrial complex II is specifically expressed during Arabidopsis seed development and germination.
    Elorza A; Roschzttardtz H; Gómez I; Mouras A; Holuigue L; Araya A; Jordana X
    Plant Cell Physiol; 2006 Jan; 47(1):14-21. PubMed ID: 16249327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved and Opposite Transcriptome Patterns during Germination in
    Zhu Y; Berkowitz O; Selinski J; Hartmann A; Narsai R; Wang Y; Mao P; Whelan J
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33036486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LEC1, FUS3, ABI3 and Em expression reveals no correlation with dormancy in Arabidopsis.
    Baumbusch LO; Hughes DW; Galau GA; Jakobsen KS
    J Exp Bot; 2004 Jan; 55(394):77-87. PubMed ID: 14676287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination.
    Narsai R; Gouil Q; Secco D; Srivastava A; Karpievitch YV; Liew LC; Lister R; Lewsey MG; Whelan J
    Genome Biol; 2017 Sep; 18(1):172. PubMed ID: 28911330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid.
    An YQ; Lin L
    BMC Plant Biol; 2011 Jun; 11():105. PubMed ID: 21668981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.
    Yano R; Takebayashi Y; Nambara E; Kamiya Y; Seo M
    Plant J; 2013 Jun; 74(5):815-28. PubMed ID: 23464703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds.
    Endo A; Tatematsu K; Hanada K; Duermeyer L; Okamoto M; Yonekura-Sakakibara K; Saito K; Toyoda T; Kawakami N; Kamiya Y; Seki M; Nambara E
    Plant Cell Physiol; 2012 Jan; 53(1):16-27. PubMed ID: 22147073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.
    Hauler A; Jonietz C; Stoll B; Stoll K; Braun HP; Binder S
    Plant J; 2013 May; 74(4):593-604. PubMed ID: 23398165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana.
    Silva AT; Ribone PA; Chan RL; Ligterink W; Hilhorst HW
    Plant Physiol; 2016 Apr; 170(4):2218-31. PubMed ID: 26888061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature.
    Chiu RS; Nahal H; Provart NJ; Gazzarrini S
    BMC Plant Biol; 2012 Jan; 12():15. PubMed ID: 22279962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.
    Leeggangers HA; Folta A; Muras A; Nap JP; Mlynarova L
    Physiol Plant; 2015 Feb; 153(2):318-26. PubMed ID: 24839909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination.
    Dekkers BJ; Pearce S; van Bolderen-Veldkamp RP; Marshall A; Widera P; Gilbert J; Drost HG; Bassel GW; Müller K; King JR; Wood AT; Grosse I; Quint M; Krasnogor N; Leubner-Metzger G; Holdsworth MJ; Bentsink L
    Plant Physiol; 2013 Sep; 163(1):205-15. PubMed ID: 23858430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process.
    Howell KA; Narsai R; Carroll A; Ivanova A; Lohse M; Usadel B; Millar AH; Whelan J
    Plant Physiol; 2009 Feb; 149(2):961-80. PubMed ID: 19074628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy.
    Nakashima K; Fujita Y; Kanamori N; Katagiri T; Umezawa T; Kidokoro S; Maruyama K; Yoshida T; Ishiyama K; Kobayashi M; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell Physiol; 2009 Jul; 50(7):1345-63. PubMed ID: 19541597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination.
    Holdsworth MJ; Bentsink L; Soppe WJJ
    New Phytol; 2008; 179(1):33-54. PubMed ID: 18422904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions.
    Preston J; Tatematsu K; Kanno Y; Hobo T; Kimura M; Jikumaru Y; Yano R; Kamiya Y; Nambara E
    Plant Cell Physiol; 2009 Oct; 50(10):1786-800. PubMed ID: 19713425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.
    Wang F; Perry SE
    Plant Physiol; 2013 Mar; 161(3):1251-64. PubMed ID: 23314941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.