BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 21908710)

  • 1. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor.
    Zhao J; Du Y; Horton JR; Upadhyay AK; Lou B; Bai Y; Zhang X; Du L; Li M; Wang B; Zhang L; Barbieri JT; Khuri FR; Cheng X; Fu H
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16212-6. PubMed ID: 21908710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49.
    Zhang L; Wang H; Liu D; Liddington R; Fu H
    J Biol Chem; 1997 May; 272(21):13717-24. PubMed ID: 9153224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Phosphate-Containing Compounds as New Inhibitors of 14-3-3/c-Abl Protein-Protein Interaction.
    Iralde-Lorente L; Tassone G; Clementi L; Franci L; Munier CC; Cau Y; Mori M; Chiariello M; Angelucci A; Perry MWD; Pozzi C; Mangani S; Botta M
    ACS Chem Biol; 2020 Apr; 15(4):1026-1035. PubMed ID: 32142251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling.
    Molzan M; Schumacher B; Ottmann C; Baljuls A; Polzien L; Weyand M; Thiel P; Rose R; Rose M; Kuhenne P; Kaiser M; Rapp UR; Kuhlmann J; Ottmann C
    Mol Cell Biol; 2010 Oct; 30(19):4698-711. PubMed ID: 20679480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry.
    Ptáčková R; Ječmen T; Novák P; Hudeček J; Stiborová M; Šulc M
    Int J Mol Sci; 2014 May; 15(6):9224-41. PubMed ID: 24865487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase.
    Wang H; Zhang L; Liddington R; Fu H
    J Biol Chem; 1998 Jun; 273(26):16297-304. PubMed ID: 9632690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cysteine Modification by Ebselen Reduces the Stability and Cellular Levels of 14-3-3 Proteins.
    Waløen K; Jung-Kc K; Vecchia ED; Pandey S; Gasparik N; Døskeland A; Patil S; Kleppe R; Hritz J; Norton WHJ; Martinez A; Haavik J
    Mol Pharmacol; 2021 Aug; 100(2):155-169. PubMed ID: 34031189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis for 14-3-3:phosphopeptide binding specificity.
    Yaffe MB; Rittinger K; Volinia S; Caron PR; Aitken A; Leffers H; Gamblin SJ; Smerdon SJ; Cantley LC
    Cell; 1997 Dec; 91(7):961-71. PubMed ID: 9428519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3).
    Rezabkova L; Boura E; Herman P; Vecer J; Bourova L; Sulc M; Svoboda P; Obsilova V; Obsil T
    J Struct Biol; 2010 Jun; 170(3):451-61. PubMed ID: 20347994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling.
    Killoran RC; Fan J; Yang D; Shilton BH; Choy WY
    PLoS One; 2015; 10(4):e0123934. PubMed ID: 25909186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of S-hydroxylysyl-methionine as the covalent cross-link of the noncollagenous (NC1) hexamer of the alpha1alpha1alpha2 collagen IV network: a role for the post-translational modification of lysine 211 to hydroxylysine 211 in hexamer assembly.
    Vanacore RM; Friedman DB; Ham AJ; Sundaramoorthy M; Hudson BG
    J Biol Chem; 2005 Aug; 280(32):29300-10. PubMed ID: 15951440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, Function, Involvement in Diseases and Targeting of 14-3-3 Proteins: An Update.
    Cau Y; Valensin D; Mori M; Draghi S; Botta M
    Curr Med Chem; 2018; 25(1):5-21. PubMed ID: 28462702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.
    Petosa C; Masters SC; Bankston LA; Pohl J; Wang B; Fu H; Liddington RC
    J Biol Chem; 1998 Jun; 273(26):16305-10. PubMed ID: 9632691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small molecules modulation of 14-3-3 protein-protein interactions.
    Mori M; Vignaroli G; Botta M
    Drug Discov Today Technol; 2013 Dec; 10(4):e541-7. PubMed ID: 24451646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3.
    Hartman AM; Hirsch AKH
    Eur J Med Chem; 2017 Aug; 136():573-584. PubMed ID: 28549334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ.
    Williams DM; Ecroyd H; Goodwin KL; Dai H; Fu H; Woodcock JM; Zhang L; Carver JA
    Biochem J; 2011 Aug; 437(3):493-503. PubMed ID: 21554249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding.
    Powell DW; Rane MJ; Joughin BA; Kalmukova R; Hong JH; Tidor B; Dean WL; Pierce WM; Klein JB; Yaffe MB; McLeish KR
    Mol Cell Biol; 2003 Aug; 23(15):5376-87. PubMed ID: 12861023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design, Binding Studies, and Crystal-Structure Evaluation of the First Ligand Targeting the Dimerization Interface of the 14-3-3ζ Adapter Protein.
    Ehlers M; Grad JN; Mittal S; Bier D; Mertel M; Ohl L; Bartel M; Briels J; Heimann M; Ottmann C; Sanchez-Garcia E; Hoffmann D; Schmuck C
    Chembiochem; 2018 Mar; 19(6):591-595. PubMed ID: 29282826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator.
    Sluchanko NN; Beelen S; Kulikova AA; Weeks SD; Antson AA; Gusev NB; Strelkov SV
    Structure; 2017 Feb; 25(2):305-316. PubMed ID: 28089448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.