BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 21908773)

  • 1. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using MEMo to discover mutual exclusivity modules in cancer.
    Ciriello G; Cerami E; Aksoy BA; Sander C; Schultz N
    Curr Protoc Bioinformatics; 2013 Mar; Chapter 8():8.17.1-8.17.12. PubMed ID: 23504936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated network analysis identifies core pathways in glioblastoma.
    Cerami E; Demir E; Schultz N; Taylor BS; Sander C
    PLoS One; 2010 Feb; 5(2):e8918. PubMed ID: 20169195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.
    Gu Y; Wang H; Qin Y; Zhang Y; Zhao W; Qi L; Zhang Y; Wang C; Guo Z
    Mol Biosyst; 2013 Mar; 9(3):467-77. PubMed ID: 23344900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An information theoretic method to identify combinations of genomic alterations that promote glioblastoma.
    Melamed RD; Wang J; Iavarone A; Rabadan R
    J Mol Cell Biol; 2015 Jun; 7(3):203-13. PubMed ID: 25941339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling mutual exclusivity of cancer mutations.
    Szczurek E; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003503. PubMed ID: 24675718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
    Babur Ö; Gönen M; Aksoy BA; Schultz N; Ciriello G; Sander C; Demir E
    Genome Biol; 2015 Feb; 16(1):45. PubMed ID: 25887147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic lethality between CCNE1 amplification and loss of BRCA1.
    Etemadmoghadam D; Weir BA; Au-Yeung G; Alsop K; Mitchell G; George J; ; Davis S; D'Andrea AD; Simpson K; Hahn WC; Bowtell DD
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19489-94. PubMed ID: 24218601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types.
    Kim YA; Cho DY; Dao P; Przytycka TM
    Bioinformatics; 2015 Jun; 31(12):i284-92. PubMed ID: 26072494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability.
    Deng Y; Luo S; Deng C; Luo T; Yin W; Zhang H; Zhang Y; Zhang X; Lan Y; Ping Y; Xiao Y; Li X
    Brief Bioinform; 2019 Jan; 20(1):254-266. PubMed ID: 28968730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying Mutually Exclusive Gene Sets with Prognostic Value and Novel Potential Driver Genes in Patients with Glioblastoma.
    Gao Q; Cui Y; Shen Y; Li Y; Gao X; Xi Y; Wang T
    Biomed Res Int; 2019; 2019():4860367. PubMed ID: 31815141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying overlapping mutated driver pathways by constructing gene networks in cancer.
    Wu H; Gao L; Li F; Song F; Yang X; Kasabov N
    BMC Bioinformatics; 2015; 16 Suppl 5(Suppl 5):S3. PubMed ID: 25859819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Sample Complexity of Cancer Pathways Identification.
    Vandin F; Raphael BJ; Upfal E
    J Comput Biol; 2016 Jan; 23(1):30-41. PubMed ID: 26645471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IndividualizedPath: identifying genetic alterations contributing to the dysfunctional pathways in glioblastoma individuals.
    Ping Y; Zhang H; Deng Y; Wang L; Zhao H; Pang L; Fan H; Xu C; Li F; Zhang Y; Gong Y; Xiao Y; Li X
    Mol Biosyst; 2014 Aug; 10(8):2031-42. PubMed ID: 24911613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors.
    Miller CA; Settle SH; Sulman EP; Aldape KD; Milosavljevic A
    BMC Med Genomics; 2011 Apr; 4():34. PubMed ID: 21489305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.