BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21908845)

  • 1. Chaperone-assisted excisive recombination, a solitary role for DnaJ (Hsp40) chaperone in lysogeny escape.
    Champ S; Puvirajesinghe TM; Perrody E; Menouni R; Genevaux P; Ansaldi M
    J Biol Chem; 2011 Nov; 286(45):38876-85. PubMed ID: 21908845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DnaJ (Hsp40 protein) binding to folded substrate impacts KplE1 prophage excision efficiency.
    Puvirajesinghe TM; Elantak L; Lignon S; Franche N; Ilbert M; Ansaldi M
    J Biol Chem; 2012 Apr; 287(17):14169-77. PubMed ID: 22378785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions.
    Genevaux P; Georgopoulos C; Kelley WL
    Mol Microbiol; 2007 Nov; 66(4):840-57. PubMed ID: 17919282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and regulation of KplE1 prophage site-specific recombination: a new recombination module analyzed.
    Panis G; Méjean V; Ansaldi M
    J Biol Chem; 2007 Jul; 282(30):21798-809. PubMed ID: 17545146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.
    Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S
    J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insights into the chaperone activity of the 40-kDa heat shock protein DnaJ: binding and remodeling of a native substrate.
    Cuéllar J; Perales-Calvo J; Muga A; Valpuesta JM; Moro F
    J Biol Chem; 2013 May; 288(21):15065-74. PubMed ID: 23580641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The DnaK/DnaJ Chaperone System Enables RNA Polymerase-DksA Complex Formation in Salmonella Experiencing Oxidative Stress.
    Kim JS; Liu L; Vázquez-Torres A
    mBio; 2021 May; 12(3):. PubMed ID: 33975942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.
    Panis G; Duverger Y; Courvoisier-Dezord E; Champ S; Talla E; Ansaldi M
    PLoS Genet; 2010 Oct; 6(10):. PubMed ID: 20949106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BAH1 an E3 Ligase from Arabidopsis thaliana Stabilizes Heat Shock Factor σ
    Xu X; Liang K; Niu Y; Shen Y; Wan X; Li H; Yang Y
    Curr Microbiol; 2018 Apr; 75(4):450-455. PubMed ID: 29260303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MS2 Lysis of Escherichia coli Depends on Host Chaperone DnaJ.
    Chamakura KR; Tran JS; Young R
    J Bacteriol; 2017 Jun; 199(12):. PubMed ID: 28396351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein binding sites involved in the assembly of the KplE1 prophage intasome.
    Panis G; Duverger Y; Champ S; Ansaldi M
    Virology; 2010 Aug; 404(1):41-50. PubMed ID: 20494389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function.
    Suzuki H; Ikeda A; Tsuchimoto S; Adachi K; Noguchi A; Fukumori Y; Kanemori M
    J Biol Chem; 2012 Jun; 287(23):19275-83. PubMed ID: 22496372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein.
    Sarbeng EB; Liu Q; Tian X; Yang J; Li H; Wong JL; Zhou L; Liu Q
    J Biol Chem; 2015 Apr; 290(14):8849-62. PubMed ID: 25635056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle.
    Cajo GC; Horne BE; Kelley WL; Schwager F; Georgopoulos C; Genevaux P
    J Biol Chem; 2006 May; 281(18):12436-44. PubMed ID: 16533811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the functions of a prophage recombination directionality factor.
    Panis G; Franche N; Méjean V; Ansaldi M
    Viruses; 2012 Oct; 4(11):2417-31. PubMed ID: 23202488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription termination controls prophage maintenance in Escherichia coli genomes.
    Menouni R; Champ S; Espinosa L; Boudvillain M; Ansaldi M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14414-9. PubMed ID: 23940369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins.
    Jordan R; McMacken R
    J Biol Chem; 1995 Mar; 270(9):4563-9. PubMed ID: 7876226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the DnaK and DnaJ chaperone system with a native substrate, P1 RepA.
    Kim SY; Sharma S; Hoskins JR; Wickner S
    J Biol Chem; 2002 Nov; 277(47):44778-83. PubMed ID: 12237299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of CbpA, a DnaJ homolog and nucleoid-associated DNA-binding protein.
    Bird JG; Sharma S; Roshwalb SC; Hoskins JR; Wickner S
    J Biol Chem; 2006 Nov; 281(45):34349-56. PubMed ID: 16973605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.