These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21908865)

  • 1. Random forest Gini importance favours SNPs with large minor allele frequency: impact, sources and recommendations.
    Boulesteix AL; Bender A; Lorenzo Bermejo J; Strobl C
    Brief Bioinform; 2012 May; 13(3):292-304. PubMed ID: 21908865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictor correlation impacts machine learning algorithms: implications for genomic studies.
    Nicodemus KK; Malley JD
    Bioinformatics; 2009 Aug; 25(15):1884-90. PubMed ID: 19460890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An AUC-based permutation variable importance measure for random forests.
    Janitza S; Strobl C; Boulesteix AL
    BMC Bioinformatics; 2013 Apr; 14():119. PubMed ID: 23560875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening large-scale association study data: exploiting interactions using random forests.
    Lunetta KL; Hayward LB; Segal J; Van Eerdewegh P
    BMC Genet; 2004 Dec; 5():32. PubMed ID: 15588316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the ability of tree-based methods and logistic regression for the detection of SNP-SNP interaction.
    García-Magariños M; López-de-Ullibarri I; Cao R; Salas A
    Ann Hum Genet; 2009 May; 73(Pt 3):360-9. PubMed ID: 19291098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying SNPs predictive of phenotype using random forests.
    Bureau A; Dupuis J; Falls K; Lunetta KL; Hayward B; Keith TP; Van Eerdewegh P
    Genet Epidemiol; 2005 Feb; 28(2):171-82. PubMed ID: 15593090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of the intrinsic stability of random forest variable importance measures.
    Wang H; Yang F; Luo Z
    BMC Bioinformatics; 2016 Feb; 17():60. PubMed ID: 26842629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INTERSNP: genome-wide interaction analysis guided by a priori information.
    Herold C; Steffens M; Brockschmidt FF; Baur MP; Becker T
    Bioinformatics; 2009 Dec; 25(24):3275-81. PubMed ID: 19837719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over-optimism in bioinformatics: an illustration.
    Jelizarow M; Guillemot V; Tenenhaus A; Strimmer K; Boulesteix AL
    Bioinformatics; 2010 Aug; 26(16):1990-8. PubMed ID: 20581402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The behaviour of random forest permutation-based variable importance measures under predictor correlation.
    Nicodemus KK; Malley JD; Strobl C; Ziegler A
    BMC Bioinformatics; 2010 Feb; 11():110. PubMed ID: 20187966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do little interactions get lost in dark random forests?
    Wright MN; Ziegler A; König IR
    BMC Bioinformatics; 2016 Mar; 17():145. PubMed ID: 27029549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximal conditional chi-square importance in random forests.
    Wang M; Chen X; Zhang H
    Bioinformatics; 2010 Mar; 26(6):831-7. PubMed ID: 20130032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling X Chromosome Data Using Random Forests: Conquering Sex Bias.
    Winham SJ; Jenkins GD; Biernacka JM
    Genet Epidemiol; 2016 Feb; 40(2):123-32. PubMed ID: 26639183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of missing and erroneous genotypes on tagging SNP selection and power of subsequent association tests.
    Liu W; Zhao W; Chase GA
    Hum Hered; 2006; 61(1):31-44. PubMed ID: 16557026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The revival of the Gini importance?
    Nembrini S; König IR; Wright MN
    Bioinformatics; 2018 Nov; 34(21):3711-3718. PubMed ID: 29757357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and genomic approaches to assess adaptive genetic variation in plants: forest trees as a model.
    Gailing O; Vornam B; Leinemann L; Finkeldey R
    Physiol Plant; 2009 Dec; 137(4):509-19. PubMed ID: 19627554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AUC-RF: a new strategy for genomic profiling with random forest.
    Calle ML; Urrea V; Boulesteix AL; Malats N
    Hum Hered; 2011; 72(2):121-32. PubMed ID: 21996641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MISS: a non-linear methodology based on mutual information for genetic association studies in both population and sib-pairs analysis.
    Brunel H; Gallardo-Chacón JJ; Buil A; Vallverdú M; Soria JM; Caminal P; Perera A
    Bioinformatics; 2010 Aug; 26(15):1811-8. PubMed ID: 20562420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathway analysis using random forests classification and regression.
    Pang H; Lin A; Holford M; Enerson BE; Lu B; Lawton MP; Floyd E; Zhao H
    Bioinformatics; 2006 Aug; 22(16):2028-36. PubMed ID: 16809386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae).
    Eckert AJ; Bower AD; González-Martínez SC; Wegrzyn JL; Coop G; Neale DB
    Mol Ecol; 2010 Sep; 19(17):3789-805. PubMed ID: 20723060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.