These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 21909250)

  • 1. Genome-scale analysis of translation elongation with a ribosome flow model.
    Reuveni S; Meilijson I; Kupiec M; Ruppin E; Tuller T
    PLoS Comput Biol; 2011 Sep; 7(9):e1002127. PubMed ID: 21909250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach.
    Poker G; Zarai Y; Margaliot M; Tuller T
    J R Soc Interface; 2014 Nov; 11(100):20140713. PubMed ID: 25232050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed.
    Lyu X; Yang Q; Zhao F; Liu Y
    Nucleic Acids Res; 2021 Sep; 49(16):9404-9423. PubMed ID: 34417614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-length ribosome density prediction by a multi-input and multi-output model.
    Tian T; Li S; Lang P; Zhao D; Zeng J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008842. PubMed ID: 33770074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RFMapp: ribosome flow model application.
    Zur H; Tuller T
    Bioinformatics; 2012 Jun; 28(12):1663-4. PubMed ID: 22495755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring efficiency of translation initiation and elongation from ribosome profiling.
    Szavits-Nossan J; Ciandrini L
    Nucleic Acids Res; 2020 Sep; 48(17):9478-9490. PubMed ID: 32821926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllability Analysis and Control Synthesis for the Ribosome Flow Model.
    Zarai Y; Margaliot M; Sontag ED; Tuller T
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1351-1364. PubMed ID: 28541906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates.
    Riba A; Di Nanni N; Mittal N; Arhné E; Schmidt A; Zavolan M
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15023-15032. PubMed ID: 31292258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome traffic on mRNAs maps to gene ontology: genome-wide quantification of translation initiation rates and polysome size regulation.
    Ciandrini L; Stansfield I; Romano MC
    PLoS Comput Biol; 2013; 9(1):e1002866. PubMed ID: 23382661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation.
    Shaham G; Tuller T
    DNA Res; 2018 Apr; 25(2):195-205. PubMed ID: 29161365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome reinitiation can explain length-dependent translation of messenger RNA.
    Rogers DW; Böttcher MA; Traulsen A; Greig D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005592. PubMed ID: 28598992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential translation tunes uneven production of operon-encoded proteins.
    Quax TE; Wolf YI; Koehorst JJ; Wurtzel O; van der Oost R; Ran W; Blombach F; Makarova KS; Brouns SJ; Forster AC; Wagner EG; Sorek R; Koonin EV; van der Oost J
    Cell Rep; 2013 Sep; 4(5):938-44. PubMed ID: 24012761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.
    Zhao F; Yu CH; Liu Y
    Nucleic Acids Res; 2017 Aug; 45(14):8484-8492. PubMed ID: 28582582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel insights into gene expression regulation during meiosis revealed by translation elongation dynamics.
    Sabi R; Tuller T
    NPJ Syst Biol Appl; 2019; 5():12. PubMed ID: 30962948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies.
    Spencer PS; Siller E; Anderson JF; Barral JM
    J Mol Biol; 2012 Sep; 422(3):328-35. PubMed ID: 22705285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate design of translational output by a neural network model of ribosome distribution.
    Tunney R; McGlincy NJ; Graham ME; Naddaf N; Pachter L; Lareau LF
    Nat Struct Mol Biol; 2018 Jul; 25(7):577-582. PubMed ID: 29967537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation of the protein synthesis rate with sequence information.
    Xia W; Lei J
    Math Biosci Eng; 2018 Apr; 15(2):507-522. PubMed ID: 29161847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the steady-state distribution in the homogeneous ribosome flow model.
    Margaliot M; Tuller T
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1724-36. PubMed ID: 23221086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Ribosome Stalling and Translation Elongation Dynamics by Deep Learning.
    Zhang S; Hu H; Zhou J; He X; Jiang T; Zeng J
    Cell Syst; 2017 Sep; 5(3):212-220.e6. PubMed ID: 28957655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.