These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21909321)

  • 1. A Novel 9-Class Auditory ERP Paradigm Driving a Predictive Text Entry System.
    Höhne J; Schreuder M; Blankertz B; Tangermann M
    Front Neurosci; 2011; 5():99. PubMed ID: 21909321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Listen, You are Writing! Speeding up Online Spelling with a Dynamic Auditory BCI.
    Schreuder M; Rost T; Tangermann M
    Front Neurosci; 2011; 5():112. PubMed ID: 22016719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spelling is Just a Click Away - A User-Centered Brain-Computer Interface Including Auto-Calibration and Predictive Text Entry.
    Kaufmann T; Völker S; Gunesch L; Kübler A
    Front Neurosci; 2012; 6():72. PubMed ID: 22833713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.
    An X; Höhne J; Ming D; Blankertz B
    PLoS One; 2014; 9(10):e111070. PubMed ID: 25350547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional auditory p300 speller with predictive text system.
    Hohne J; Schreuder M; Blankertz B; Tangermann M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4185-8. PubMed ID: 21096889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Prefrontal Single-Channel EEG Data for Portable Auditory ERP-Based Brain-Computer Interfaces.
    Ogino M; Kanoga S; Muto M; Mitsukura Y
    Front Hum Neurosci; 2019; 13():250. PubMed ID: 31404255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C; Daban S; Sellers E; Holzner C; Krausz G; Carabalona R; Gramatica F; Edlinger G
    Neurosci Lett; 2009 Oct; 462(1):94-8. PubMed ID: 19545601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuo-auditory stimuli with semantic, temporal and spatial congruence for a P300-based BCI: An exploratory test with an ALS patient in a completely locked-in state.
    Pires G; Barbosa S; Nunes UJ; Gonçalves E
    J Neurosci Methods; 2022 Sep; 379():109661. PubMed ID: 35817307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An auditory multiclass brain-computer interface with natural stimuli: Usability evaluation with healthy participants and a motor impaired end user.
    Simon N; Käthner I; Ruf CA; Pasqualotto E; Kübler A; Halder S
    Front Hum Neurosci; 2014; 8():1039. PubMed ID: 25620924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients.
    Kübler A; Furdea A; Halder S; Hammer EM; Nijboer F; Kotchoubey B
    Ann N Y Acad Sci; 2009 Mar; 1157():90-100. PubMed ID: 19351359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond maximum speed--a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI).
    Kaufmann T; Kübler A
    J Neural Eng; 2014 Oct; 11(5):056004. PubMed ID: 25080406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.
    Höhne J; Tangermann M
    PLoS One; 2014; 9(6):e98322. PubMed ID: 24886978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Communication with a "P300" Matrix Speller Using Electrocorticographic Signals (ECoG).
    Brunner P; Ritaccio AL; Emrich JF; Bischof H; Schalk G
    Front Neurosci; 2011; 5():5. PubMed ID: 21369351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of training and motivation on auditory P300 brain-computer interface performance.
    Baykara E; Ruf CA; Fioravanti C; Käthner I; Simon N; Kleih SC; Kübler A; Halder S
    Clin Neurophysiol; 2016 Jan; 127(1):379-387. PubMed ID: 26051753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface.
    Yin E; Zeyl T; Saab R; Hu D; Zhou Z; Chau T
    Int J Neural Syst; 2016 Feb; 26(1):1650001. PubMed ID: 26678249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of auditory and visual p300 brain-computer interface aptitude.
    Halder S; Hammer EM; Kleih SC; Bogdan M; Rosenstiel W; Birbaumer N; Kübler A
    PLoS One; 2013; 8(2):e53513. PubMed ID: 23457444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support.
    Choi YJ; Kwon OS; Kim SP
    Cogn Neurodyn; 2023 Dec; 17(6):1401-1416. PubMed ID: 37974580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training and testing ERP-BCIs under different mental workload conditions.
    Ke Y; Wang P; Chen Y; Gu B; Qi H; Zhou P; Ming D
    J Neural Eng; 2016 Feb; 13(1):016007. PubMed ID: 26655346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli.
    Barbosa S; Pires G; Nunes U
    J Neurosci Methods; 2016 Mar; 261():47-61. PubMed ID: 26687642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.