These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21909589)

  • 21. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process.
    Wang D; Li Y
    J Am Chem Soc; 2010 May; 132(18):6280-1. PubMed ID: 20402502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monodispersed Pd-Ni nanoparticles: composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction.
    Wu Y; Wang D; Zhao P; Niu Z; Peng Q; Li Y
    Inorg Chem; 2011 Mar; 50(6):2046-8. PubMed ID: 21268607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hollow ruthenium nanoparticles with small dimensions derived from Ni@Ru core@shell structure: synthesis and enhanced catalytic dehydrogenation of ammonia borane.
    Chen G; Desinan S; Rosei R; Rosei F; Ma D
    Chem Commun (Camb); 2012 Aug; 48(64):8009-11. PubMed ID: 22773309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured catalysts in fuel cells.
    Zhong CJ; Luo J; Fang B; Wanjala BN; Njoki PN; Loukrakpam R; Yin J
    Nanotechnology; 2010 Feb; 21(6):062001. PubMed ID: 20065536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles.
    Alayoglu S; Eichhorn B
    J Am Chem Soc; 2008 Dec; 130(51):17479-86. PubMed ID: 19049272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.
    Yang P; Xu Y; Chen L; Wang X; Zhang Q
    Langmuir; 2015 Oct; 31(42):11701-8. PubMed ID: 26434608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic interface between metal Cu nanoparticles and CoO for highly efficient hydrogen production from ammonia borane.
    Li H; He W; Xu L; Pan Y; Xu R; Sun Z; Wei S
    RSC Adv; 2023 Apr; 13(17):11569-11576. PubMed ID: 37063727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane.
    Hu J; Chen Z; Li M; Zhou X; Lu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13191-200. PubMed ID: 25036741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework.
    Jiang HL; Akita T; Ishida T; Haruta M; Xu Q
    J Am Chem Soc; 2011 Feb; 133(5):1304-6. PubMed ID: 21214205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.
    Gu X; Lu ZH; Jiang HL; Akita T; Xu Q
    J Am Chem Soc; 2011 Aug; 133(31):11822-5. PubMed ID: 21761819
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Industrial Ziegler-type hydrogenation catalysts made from Co(neodecanoate)2 or Ni(2-ethylhexanoate)2 and AlEt3: evidence for nanoclusters and sub-nanocluster or larger Ziegler-nanocluster based catalysis.
    Alley WM; Hamdemir IK; Wang Q; Frenkel AI; Li L; Yang JC; Menard LD; Nuzzo RG; Özkar S; Yih KH; Johnson KA; Finke RG
    Langmuir; 2011 May; 27(10):6279-94. PubMed ID: 21480617
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.
    Zaleska-Medynska A; Marchelek M; Diak M; Grabowska E
    Adv Colloid Interface Sci; 2016 Mar; 229():80-107. PubMed ID: 26805520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage.
    Singh SK; Singh AK; Aranishi K; Xu Q
    J Am Chem Soc; 2011 Dec; 133(49):19638-41. PubMed ID: 22070579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferrous centers confined on core-shell nanostructures for low-temperature CO oxidation.
    Guo X; Fu Q; Ning Y; Wei M; Li M; Zhang S; Jiang Z; Bao X
    J Am Chem Soc; 2012 Aug; 134(30):12350-3. PubMed ID: 22812713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A facile one-pot synthesis and enhanced formic acid oxidation of monodisperse Pd-Cu nanocatalysts.
    Park KH; Lee YW; Kang SW; Han SW
    Chem Asian J; 2011 Jun; 6(6):1515-9. PubMed ID: 21509940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.