These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 21909591)

  • 21. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conversion of raw lignocellulosic biomass into branched long-chain alkanes through three tandem steps.
    Li C; Ding D; Xia Q; Liu X; Wang Y
    ChemSusChem; 2016 Jul; 9(13):1712-8. PubMed ID: 27241180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Furfural--a promising platform for lignocellulosic biofuels.
    Lange JP; van der Heide E; van Buijtenen J; Price R
    ChemSusChem; 2012 Jan; 5(1):150-66. PubMed ID: 22213717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic Production of Levulinic Acid (LA) from Actual Biomass.
    Signoretto M; Taghavi S; Ghedini E; Menegazzo F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31366018
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.
    Silveira MH; Morais AR; da Costa Lopes AM; Olekszyszen DN; Bogel-Łukasik R; Andreaus J; Pereira Ramos L
    ChemSusChem; 2015 Oct; 8(20):3366-90. PubMed ID: 26365899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass.
    Pileidis FD; Titirici MM
    ChemSusChem; 2016 Mar; 9(6):562-82. PubMed ID: 26847212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.
    Zhou CH; Xia X; Lin CX; Tong DS; Beltramini J
    Chem Soc Rev; 2011 Nov; 40(11):5588-617. PubMed ID: 21863197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts.
    Lopes AM; Bogel-Łukasik R
    ChemSusChem; 2015 Mar; 8(6):947-65. PubMed ID: 25703380
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalysis for biomass and CO2 use through solar energy: opening new scenarios for a sustainable and low-carbon chemical production.
    Lanzafame P; Centi G; Perathoner S
    Chem Soc Rev; 2014 Nov; 43(22):7562-80. PubMed ID: 24577063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid.
    Zhang Z; Zhao ZK
    Bioresour Technol; 2010 Feb; 101(3):1111-4. PubMed ID: 19800219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.
    Ma Z; Custodis V; Hemberger P; Bährle C; Vogel F; Jeschk G; van Bokhoven JA
    Chimia (Aarau); 2015; 69(10):597-602. PubMed ID: 26598403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.
    Santhanaraj D; Rover MR; Resasco DE; Brown RC; Crossley S
    ChemSusChem; 2014 Nov; 7(11):3132-7. PubMed ID: 25204798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing.
    Serrano-Ruiz JC; Luque R; Sepúlveda-Escribano A
    Chem Soc Rev; 2011 Nov; 40(11):5266-81. PubMed ID: 21713268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide.
    Wu L; Dutta S; Mascal M
    ChemSusChem; 2015 Apr; 8(7):1167-9. PubMed ID: 25736835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of biomass waste into high value chemicals.
    Cho EJ; Trinh LTP; Song Y; Lee YG; Bae HJ
    Bioresour Technol; 2020 Feb; 298():122386. PubMed ID: 31740245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes.
    Nicklaus CM; Minnaard AJ; Feringa BL; de Vries JG
    ChemSusChem; 2013 Sep; 6(9):1631-5. PubMed ID: 23857755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural.
    Dutta S; Mascal M
    ChemSusChem; 2014 Nov; 7(11):3028-30. PubMed ID: 25196591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A dry platform for separation of proteins from biomass-containing polysaccharides, lignin, and polyphenols.
    Barakat A; Jérôme F; Rouau X
    ChemSusChem; 2015 Apr; 8(7):1161-6. PubMed ID: 25760796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.