These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21909662)

  • 61. A reusable liposome array and its application to assay of growth-hormone-related peptides.
    Shoji A; Sugimoto E; Orita S; Nozawa K; Yanagida A; Shibusawa Y; Sugawara M
    Anal Bioanal Chem; 2010 Jun; 397(3):1377-81. PubMed ID: 20306177
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Detection of norovirus virus-like particles using a surface plasmon resonance-assisted fluoroimmunosensor optimized for quantum dot fluorescent labels.
    Ashiba H; Sugiyama Y; Wang X; Shirato H; Higo-Moriguchi K; Taniguchi K; Ohki Y; Fujimaki M
    Biosens Bioelectron; 2017 Jul; 93():260-266. PubMed ID: 27597126
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Capillary-assisted microfluidic biosensing platform captures single cell secretion dynamics in nanoliter compartments.
    Hassanzadeh-Barforoushi A; Warkiani ME; Gallego-Ortega D; Liu G; Barber T
    Biosens Bioelectron; 2020 May; 155():112113. PubMed ID: 32217335
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ultra-sensitive fully automated immunoassay for detection of propanil in aqueous samples: steps of progress toward sub-nanogram per liter detection.
    Tschmelak J; Proll G; Gauglitz G
    Anal Bioanal Chem; 2004 Aug; 379(7-8):1004-12. PubMed ID: 15241578
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ganglioside-liposome immunoassay for the detection of botulinum toxin.
    Ahn-Yoon S; DeCory TR; Durst RA
    Anal Bioanal Chem; 2004 Jan; 378(1):68-75. PubMed ID: 14615869
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Real-Time Capture and Visualization of Individual Viruses in Complex Media.
    Scherr SM; Daaboul GG; Trueb J; Sevenler D; Fawcett H; Goldberg B; Connor JH; Ünlü MS
    ACS Nano; 2016 Feb; 10(2):2827-33. PubMed ID: 26760677
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A label-free microfluidic biosensor for activity detection of single microalgae cells based on chlorophyll fluorescence.
    Wang J; Sun J; Song Y; Xu Y; Pan X; Sun Y; Li D
    Sensors (Basel); 2013 Nov; 13(12):16075-89. PubMed ID: 24287532
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dialysis-functionalized microfluidic platform for in situ formation of purified liposomes.
    Shan H; Sun Q; Xie Y; Liu X; Chen X; Zhao S; Chen Z
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113829. PubMed ID: 38430829
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens.
    Chen P; Gates-Hollingsworth M; Pandit S; Park A; Montgomery D; AuCoin D; Gu J; Zenhausern F
    Talanta; 2019 Jan; 191():81-88. PubMed ID: 30262102
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor.
    Narang R; Mohammadi S; Ashani MM; Sadabadi H; Hejazi H; Zarifi MH; Sanati-Nezhad A
    Sci Rep; 2018 Oct; 8(1):15807. PubMed ID: 30361480
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Immunosensor for estrone with an equal limit of detection as common analytical methods.
    Tschmelak J; Proll G; Gauglitz G
    Anal Bioanal Chem; 2004 Feb; 378(3):744-5. PubMed ID: 14647939
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nanoporous Membranes for Microfluidic Concentration Prior to Electrophoretic Separation of Proteins in Urine.
    Li F; Guijt RM; Breadmore MC
    Anal Chem; 2016 Aug; 88(16):8257-63. PubMed ID: 27391148
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A microfluidic platform for high-throughput multiplexed protein quantitation.
    Volpetti F; Garcia-Cordero J; Maerkl SJ
    PLoS One; 2015; 10(2):e0117744. PubMed ID: 25680117
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Superior performance of liposomes over enzymatic amplification in a high-throughput assay for myoglobin in human serum.
    Edwards KA; Meyers KJ; Leonard B; Baeumner AJ
    Anal Bioanal Chem; 2013 May; 405(12):4017-26. PubMed ID: 23443519
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A liposome-based ion release impedance sensor for biological detection.
    Damhorst GL; Smith CE; Salm EM; Sobieraj MM; Ni H; Kong H; Bashir R
    Biomed Microdevices; 2013 Oct; 15(5):895-905. PubMed ID: 23793417
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The use of coated paramagnetic particles as a physical label in a magneto-immunoassay.
    Richardson J; Hawkins P; Luxton R
    Biosens Bioelectron; 2001 Dec; 16(9-12):989-93. PubMed ID: 11679279
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Osmotic-engine-driven liposomes in microfluidic channels.
    Shoji K; Kawano R
    Lab Chip; 2019 Oct; 19(20):3472-3480. PubMed ID: 31512693
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integration of a guided-mode resonance filter with microposts for in-cell protein detection.
    Tu YK; Tsai MZ; Lee IC; Hsu HY; Huang CS
    Analyst; 2016 Jun; 141(13):4189-95. PubMed ID: 27170945
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integrated Microfluidic Device for Functional Secretory Immunophenotyping of Immune Cells.
    Rodriguez-Moncayo R; Jimenez-Valdes RJ; Gonzalez-Suarez AM; Garcia-Cordero JL
    ACS Sens; 2020 Feb; 5(2):353-361. PubMed ID: 31927915
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems.
    Noeth N; Keller SS; Boisen A
    Sensors (Basel); 2013 Dec; 14(1):229-44. PubMed ID: 24366179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.