BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21909670)

  • 1. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).
    Meinita MD; Hong YK; Jeong GT
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):123-8. PubMed ID: 21909670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition.
    Jeong TS; Kim YS; Oh KK
    Bioresour Technol; 2011 Nov; 102(22):10529-34. PubMed ID: 21963246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies.
    Hargreaves PI; Barcelos CA; da Costa AC; Pereira N
    Bioresour Technol; 2013 Apr; 134():257-63. PubMed ID: 23500583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid.
    Park C; Lee JH; Yang X; Yoo HY; Lee JH; Lee SK; Kim SW
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):1015-21. PubMed ID: 26899601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kappaphycus alvarezii as a source of bioethanol.
    Khambhaty Y; Mody K; Gandhi MR; Thampy S; Maiti P; Brahmbhatt H; Eswaran K; Ghosh PK
    Bioresour Technol; 2012 Jan; 103(1):180-5. PubMed ID: 22050835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.
    Jeong TS; Choi CH; Lee JY; Oh KK
    Bioresour Technol; 2012 Jul; 116():435-40. PubMed ID: 22522017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).
    Meinita MD; Hong YK; Jeong GT
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):93-8. PubMed ID: 21909671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production.
    Ra CH; Nguyen TH; Jeong GT; Kim SK
    Bioresour Technol; 2016 Jun; 209():66-72. PubMed ID: 26950757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass.
    Yat SC; Berger A; Shonnard DR
    Bioresour Technol; 2008 Jun; 99(9):3855-63. PubMed ID: 17904838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biobutanol production from sulfuric acid-pretreated red algal biomass by a newly isolated Clostridium sp. strain WK.
    Hong Y; Chen C; Wu YR
    Biotechnol Appl Biochem; 2020 Sep; 67(5):738-743. PubMed ID: 31532860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates.
    Nguyen TH; Ra CH; Sunwoo IY; Jeong GT; Kim SK
    J Microbiol Biotechnol; 2016 Jul; 26(7):1259-66. PubMed ID: 27056472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.
    Einbu A; Vårum KM
    Biomacromolecules; 2007 Jan; 8(1):309-14. PubMed ID: 17206822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid hydrolysis of sugarcane bagasse for lactic acid production.
    Laopaiboon P; Thani A; Leelavatcharamas V; Laopaiboon L
    Bioresour Technol; 2010 Feb; 101(3):1036-43. PubMed ID: 19766480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing dilute-acid pretreatment of rapeseed straw for extraction of hemicellulose.
    Jeong TS; Um BH; Kim JS; Oh KK
    Appl Biochem Biotechnol; 2010 May; 161(1-8):22-33. PubMed ID: 20087686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors.
    Lee JW; Jeffries TW
    Bioresour Technol; 2011 May; 102(10):5884-90. PubMed ID: 21377872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dilute-acid pretreatment of distillers' grains and corn fiber.
    Noureddini H; Byun J
    Bioresour Technol; 2010 Feb; 101(3):1060-7. PubMed ID: 19773157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.
    Jensen JR; Morinelly JE; Gossen KR; Brodeur-Campbell MJ; Shonnard DR
    Bioresour Technol; 2010 Apr; 101(7):2317-25. PubMed ID: 20018506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar yields from dilute sulfuric acid and sulfur dioxide pretreatments and subsequent enzymatic hydrolysis of switchgrass.
    Shi J; Ebrik MA; Wyman CE
    Bioresour Technol; 2011 Oct; 102(19):8930-8. PubMed ID: 21835614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.