These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 21909758)
1. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Chen L; Wang T; Zhao M; Tian Q; Zhang WH Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758 [TBL] [Abstract][Full Text] [Related]
2. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Chen L; Wang T; Zhao M; Zhang W Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705 [TBL] [Abstract][Full Text] [Related]
3. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Wang T; Chen L; Zhao M; Tian Q; Zhang WH BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498 [TBL] [Abstract][Full Text] [Related]
4. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
5. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Formey D; Sallet E; Lelandais-Brière C; Ben C; Bustos-Sanmamed P; Niebel A; Frugier F; Combier JP; Debellé F; Hartmann C; Poulain J; Gavory F; Wincker P; Roux C; Gentzbittel L; Gouzy J; Crespi M Genome Biol; 2014 Sep; 15(9):457. PubMed ID: 25248950 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. Wang TZ; Zhang WH Methods Mol Biol; 2013; 1069():67-80. PubMed ID: 23996309 [TBL] [Abstract][Full Text] [Related]
7. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Cao C; Long R; Zhang T; Kang J; Wang Z; Wang P; Sun H; Yu J; Yang Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562933 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Zhou ZS; Zeng HQ; Liu ZP; Yang ZM Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696 [TBL] [Abstract][Full Text] [Related]
9. Aluminum-induced ethylene production is associated with inhibition of root elongation in Lotus japonicus L. Sun P; Tian QY; Zhao MG; Dai XY; Huang JH; Li LH; Zhang WH Plant Cell Physiol; 2007 Aug; 48(8):1229-35. PubMed ID: 17573361 [TBL] [Abstract][Full Text] [Related]
10. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide characterization, transcriptome profiling, and functional analysis of the ALMT gene family in Medicago for aluminum resistance. Jin D; Chen J; Kang Y; Yang F; Yu D; Liu X; Yan C; Guo Z; Zhang Y J Plant Physiol; 2024 Jun; 297():154262. PubMed ID: 38703548 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. Xu L; Wang Y; Zhai L; Xu Y; Wang L; Zhu X; Gong Y; Yu R; Limera C; Liu L J Exp Bot; 2013 Nov; 64(14):4271-87. PubMed ID: 24014874 [TBL] [Abstract][Full Text] [Related]
13. Identification of tissue-specific and cold-responsive lncRNAs in Medicago truncatula by high-throughput RNA sequencing. Zhao M; Wang T; Sun T; Yu X; Tian R; Zhang WH BMC Plant Biol; 2020 Mar; 20(1):99. PubMed ID: 32138663 [TBL] [Abstract][Full Text] [Related]
14. Physiological and molecular characterization of aluminum resistance in Medicago truncatula. Chandran D; Sharopova N; VandenBosch KA; Garvin DF; Samac DA BMC Plant Biol; 2008 Aug; 8():89. PubMed ID: 18713465 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide identification of Thellungiella salsuginea microRNAs with putative roles in the salt stress response. Zhang Q; Zhao C; Li M; Sun W; Liu Y; Xia H; Sun M; Li A; Li C; Zhao S; Hou L; Picimbon JF; Wang X; Zhao Y BMC Plant Biol; 2013 Nov; 13():180. PubMed ID: 24237587 [TBL] [Abstract][Full Text] [Related]
16. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. Szittya G; Moxon S; Santos DM; Jing R; Fevereiro MP; Moulton V; Dalmay T BMC Genomics; 2008 Dec; 9():593. PubMed ID: 19068109 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Zhou ZS; Huang SQ; Yang ZM Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Sun Z; He Y; Li J; Wang X; Chen J Plant Cell Physiol; 2015 Apr; 56(4):688-99. PubMed ID: 25535197 [TBL] [Abstract][Full Text] [Related]
19. Role of microRNAs in aluminum stress in plants. He H; He L; Gu M Plant Cell Rep; 2014 Jun; 33(6):831-6. PubMed ID: 24413694 [TBL] [Abstract][Full Text] [Related]
20. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. Zeng QY; Yang CY; Ma QB; Li XP; Dong WW; Nian H BMC Plant Biol; 2012 Oct; 12():182. PubMed ID: 23040172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]