These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2190980)

  • 1. Purification of three related peripheral membrane proteins needed for vesicular transport.
    Clary DO; Rothman JE
    J Biol Chem; 1990 Jun; 265(17):10109-17. PubMed ID: 2190980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast.
    Clary DO; Griff IC; Rothman JE
    Cell; 1990 May; 61(4):709-21. PubMed ID: 2111733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast.
    Wilson DW; Wilcox CA; Flynn GC; Chen E; Kuang WJ; Henzel WJ; Block MR; Ullrich A; Rothman JE
    Nature; 1989 Jun; 339(6223):355-9. PubMed ID: 2657434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The yeast SEC17 gene product is functionally equivalent to mammalian alpha-SNAP protein.
    Griff IC; Schekman R; Rothman JE; Kaiser CA
    J Biol Chem; 1992 Jun; 267(17):12106-15. PubMed ID: 1601878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soluble N-ethylmaleimide-sensitive fusion attachment proteins (SNAPs) bind to a multi-SNAP receptor complex in Golgi membranes.
    Whiteheart SW; Brunner M; Wilson DW; Wiedmann M; Rothman JE
    J Biol Chem; 1992 Jun; 267(17):12239-43. PubMed ID: 1601890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of soluble N-ethylmaleimide-sensitive fusion attachment proteins from bovine brain microsomes.
    Clary DO; Rothman JE
    Methods Enzymol; 1992; 219():319-30. PubMed ID: 1488004
    [No Abstract]   [Full Text] [Related]  

  • 7. Identification of a 25-kD protein from yeast cytosol that operates in a prefusion step of vesicular transport between compartments of the Golgi.
    Wattenberg BW; Hiebsch RR; LeCureux LW; White MP
    J Cell Biol; 1990 Apr; 110(4):947-54. PubMed ID: 2182655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian Bet3 functions as a cytosolic factor participating in transport from the ER to the Golgi apparatus.
    Loh E; Peter F; Subramaniam VN; Hong W
    J Cell Sci; 2005 Mar; 118(Pt 6):1209-22. PubMed ID: 15728249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for Tlg1p in the transport of proteins within the Golgi apparatus of Saccharomyces cerevisiae.
    Coe JG; Lim AC; Xu J; Hong W
    Mol Biol Cell; 1999 Jul; 10(7):2407-23. PubMed ID: 10397773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteins involved in vesicular transport and membrane fusion.
    Waters MG; Griff IC; Rothman JE
    Curr Opin Cell Biol; 1991 Aug; 3(4):615-20. PubMed ID: 1772655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of an N-ethylmaleimide-sensitive fusion protein to Golgi membranes requires both a soluble protein(s) and an integral membrane receptor.
    Weidman PJ; Melançon P; Block MR; Rothman JE
    J Cell Biol; 1989 May; 108(5):1589-96. PubMed ID: 2541136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free transport to distinct Golgi cisternae is compartment specific and ARF independent.
    Happe S; Weidman P
    J Cell Biol; 1998 Feb; 140(3):511-23. PubMed ID: 9456313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vesicular transport between the endoplasmic reticulum and the Golgi stack requires the NEM-sensitive fusion protein.
    Beckers CJ; Block MR; Glick BS; Rothman JE; Balch WE
    Nature; 1989 Jun; 339(6223):397-8. PubMed ID: 2542798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of the vesicle docking protein p115 to Golgi membranes is inhibited under mitotic conditions.
    Levine TP; Rabouille C; Kieckbusch RH; Warren G
    J Biol Chem; 1996 Jul; 271(29):17304-11. PubMed ID: 8663393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast and mammals utilize similar cytosolic components to drive protein transport through the Golgi complex.
    Dunphy WG; Pfeffer SR; Clary DO; Wattenberg BW; Glick BS; Rothman JE
    Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1622-6. PubMed ID: 3513182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of TRAPP from Saccharomyces cerevisiae and identification of its mammalian counterpart.
    Sacher M; Ferro-Novick S
    Methods Enzymol; 2001; 329():234-41. PubMed ID: 11210539
    [No Abstract]   [Full Text] [Related]  

  • 17. Morphological and functional association of Sec22b/ERS-24 with the pre-Golgi intermediate compartment.
    Zhang T; Wong SH; Tang BL; Xu Y; Hong W
    Mol Biol Cell; 1999 Feb; 10(2):435-53. PubMed ID: 9950687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport.
    Diaz R; Mayorga LS; Weidman PJ; Rothman JE; Stahl PD
    Nature; 1989 Jun; 339(6223):398-400. PubMed ID: 2725659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sec34 is implicated in traffic from the endoplasmic reticulum to the Golgi and exists in a complex with GTC-90 and ldlBp.
    Loh E; Hong W
    J Biol Chem; 2002 Jun; 277(24):21955-61. PubMed ID: 11929878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system.
    Shorter J; Warren G
    J Cell Biol; 1999 Jul; 146(1):57-70. PubMed ID: 10402460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.